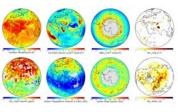
3rd IASI Conference Hyères, 4-8 February 2013

The IASI-NG mission:

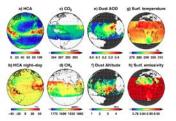
Scientific objectives and expected results

Cyril Crevoisier, Cathy Clerbaux, Vincent Guidard, Thierry Phulpin, Raymond Armante, Brice Barret, Claude Camy-Peyret, Jean-Pierre Chaboureau, Gaelle Dufour, Juliette Hadji-Lazaro, Hervé Herbin, Nicole Jacquinet, Lydie Lavanant, Sébastien Payan, Eric Péquignot, Clémence Piérangelo, Claudia Stubenrauch



The IASI-NG mission

Numerical Weather Prediction

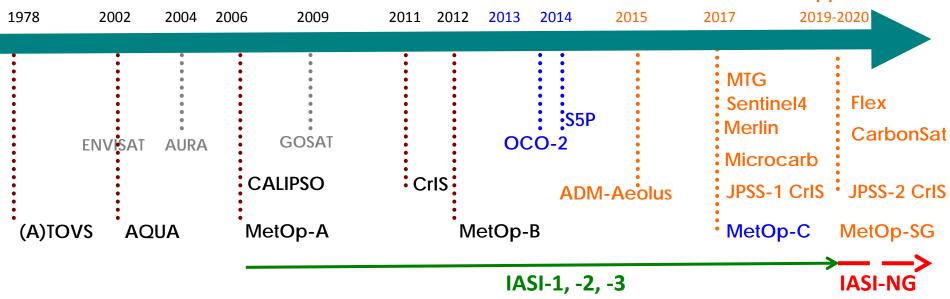

Global NWP, LAM, mesoscale models

Atmospheric composition

Climate

More than 20 species detected, some well quantified (O_3 , CO, CH_4), some only detected (SO_2 , HNO_3 , NH_3 , formic acid, methanol) in special situations (fires, volcanoes)

•Essential Climate Variables: T, WV, GHG, Surface characteristics, Clouds, Aerosols.


•Reference for the GSICS.

Lessons learned with IASI onboard MetOp-A:

- •IASI benefits three communities that will be more and more connected (eg: MACC-GMES, Essential Climate Variables)
- •Covering continuously the whole TIR domain is very useful.
- •To retrieve several variables, other atmospheric data (cloud, T, WV) are mandatory.
- •Spectral and radiometric stabilities are very important.
- •Retrievals over land/sea by day/night.

The IASI-NG mission

Missions under developpement

•EPS-SG

•PFA : MetIMAGE, MWS, IASI-NG, RO, UVNS, 3MI

•PFB : SCATT, MWI, RO

•IASI-NG Status:

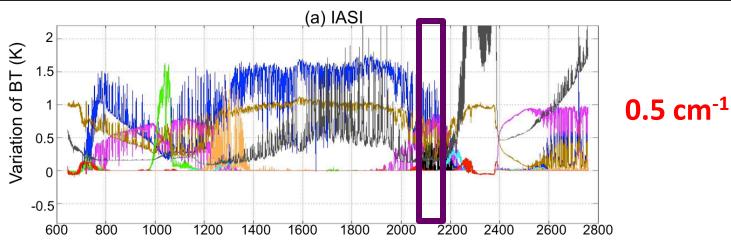
• Phase-A studies at CNES since January 2010, end in April 2012.

•Two industrial studies have been conducted in parallel (Astrium-France and Thales Alenia Space-France).

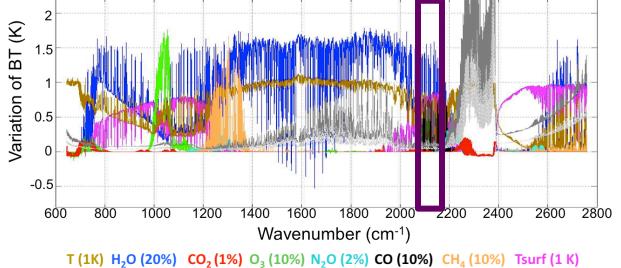
•Objectives of the mission:

- •To assure the continuity of IASI for NWP, atmospheric chemistry and climate applications.
- •To improve the characterization of the lower part of the troposphere, the UT/LS region and, more generally, of the full atmospheric column.
- •To improve the precision of the retrievals and to allow the detection of new species.

•Characteristics:

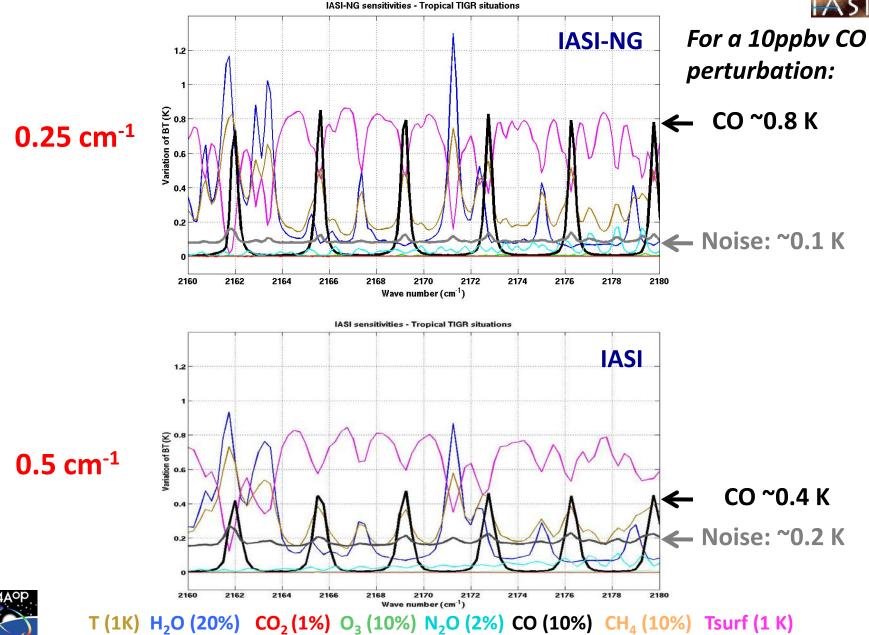

- -spectral coverage: 645 2760 cm⁻¹
- -spectral resolution: 0.25 cm⁻¹ after apodisation (0.50 cm⁻¹ for IASI)
- -spectral sampling: 0.125 cm⁻¹ (0.25 cm⁻¹ for IASI).
- -reduction of the radiometric noise by at least a factor of ~ 2 as compared to IASI.
- -spatial sampling: 12 km FOV.

How improving both spectral and radiometric characteristics can help reaching the objectives?


IASI-NG: a few scenarios

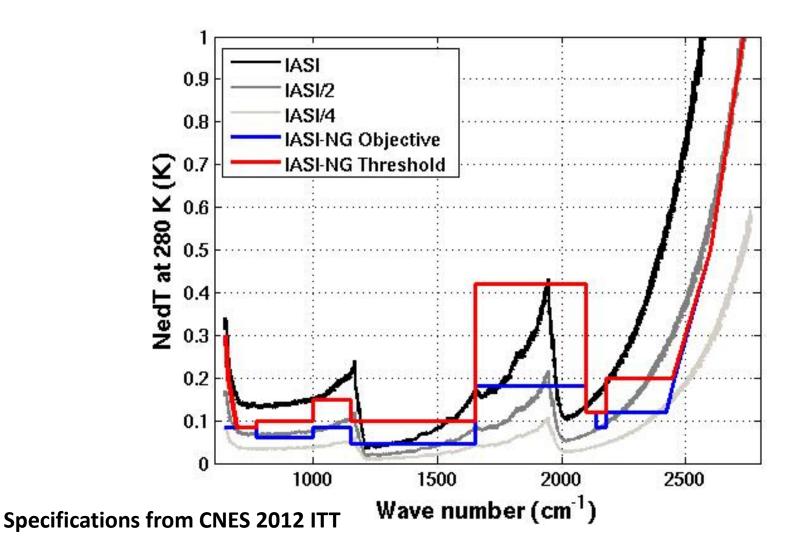
Spectral	IASI noise	IASI noise	IASI noise	IASI-NG noise	IASI-NG noise
resolution		/2	/4	Threshold	Objective
0.5 cm ⁻¹	IRS1a	IRS1b	IRS1c	-	-
0.25 cm ⁻¹	IRS2a	IRS2b	IRS2c	IRS2-T	IRS2-0

(b) IASI-NG


0.25 cm⁻¹



IASI-NG: a few scenarios

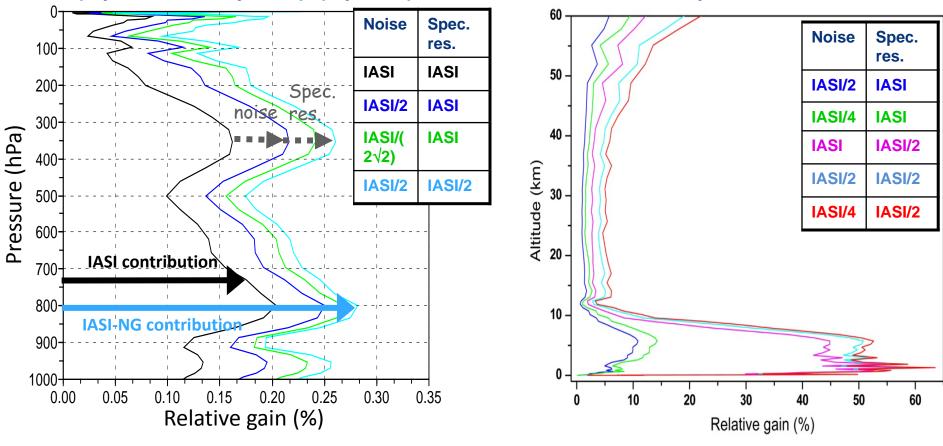


EISA

IASI-NG: a few scenarios

Spectral	IASI noise	IASI noise	IASI noise	IASI-NG noise	IASI-NG noise
resolution		/2	/4 Threshold		Objective
0.5 cm ⁻¹	IRS1a	IRS1b	IRS1c	-	-
0.25 cm ⁻¹	IRS2a	IRS2b	IRS2c	IRS2-T	IRS2-0

IASI-NG: impact on thermodynamic variables

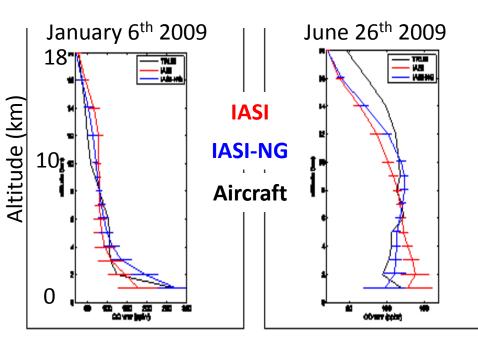


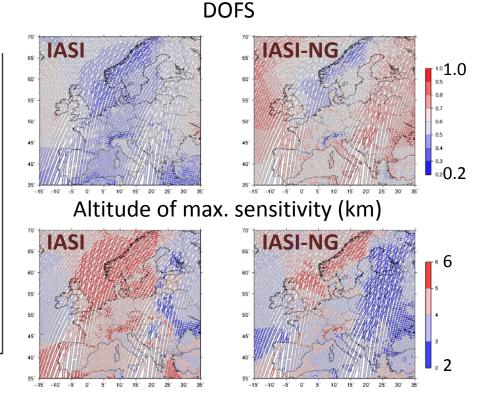
Temperature

Relative gain of each scenario (*a posteriori-a priori*)/(*a priori*)

Relative gain of each scenario compared to IASI

Water vapor

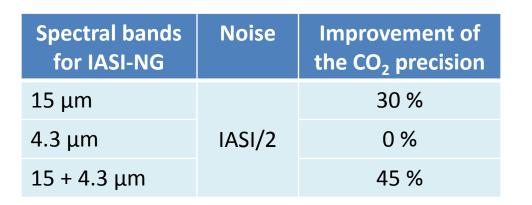

Spectral resolution improves the instrument contribution beyond noise reduction by increasing the number of channels.



Carbon monoxide

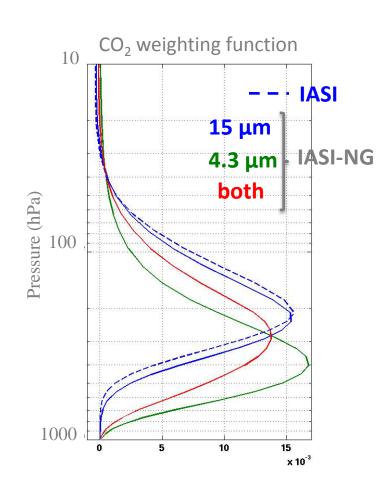
Ozone

MOZAIC aircraft CO at the Frankfurt airport



Simulation performed using a regional model that described an increase of (0-6 km) ozone observed in Europe (August 20th, 2009).

Carbon dioxide

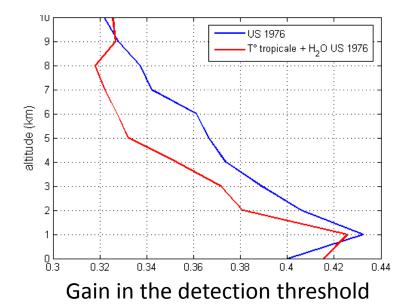


•IASI-NG will enable the use of 4.3 μ m channels, giving access to a lower part of the atmosphere, with a much improved precision.

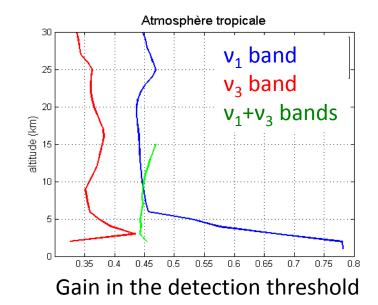
•Strong and needed complementarity with SWIR obs. (GOSAT, OCO-2, UVNS).

•Still relies on synergy with MWS!

•N₂O?



IASI-NG: impact on detection of atm. species



•SO₂: a 45 % gain on the detection threshold + some information on the vertical structure of the plumes.

•Volcanic ash: improvement on the detection limit.

•Ammonia [0-2 km]: gain of 40 % on the detection limit.

 \rightarrow Improvement of volcanic eruption alert (and more species will be retrieved: SO₂, H₂S, H₂SO₄, ash)

LATM

IASI-NG: summary

	IASI		IASI-NG		
Chemistry	DOFs	Error (%)	DOFs	Error (%)	What the 'NG' brings
0 ₃	3-4	PBL : 60% Tropo : 11%	4-5	PBL : 40% Tropo : 8%	More information in PBL
со	1-2	PBL : 16% Tropo : 8%	2-3	PBL : 10% Tropo : 6%	More information in PBL
HNO ₃	1 or less		2		Both tropo and strato
NH ₃ ^a	detected	-	measured	-	> instrumental noise
Methanol ^a	detected	-	measured	-	> instrumental noise
$C_2H_4^a$	detected	-	measured	-	> instrumental noise
SO ₂ -volcanos	lf > 2DU	-	If > 1 DU	-	+ Altitude of the plume
Climate	DOFs	Error (%)	DOFs	Error (%)	What the 'NG' brings
H ₂ O	5-6	~13%	6-7	~10%	Error improved by 1.5
Т	6	~0.6K	12	~0.45 K	Error improved by 2.5
CO ₂	1 or less	~1%	1-2	<1%	Low troposphere
CH ₄	1or less	~3%	1-2		Less interferences
N ₂ O	detected	-	measured	-	
Aerosols	dust				More types
Emissivity		0,04 @4µm		0,02 @4µm	

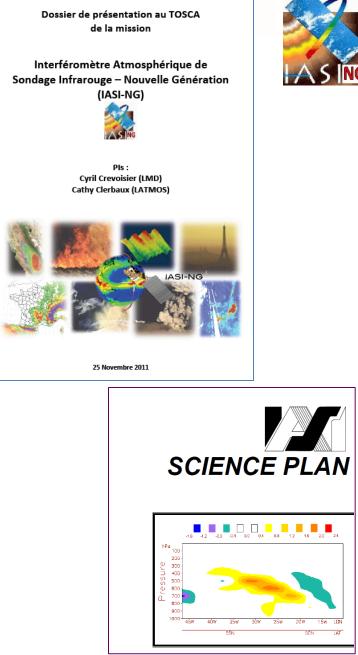
So far, most of the studies were based on representative atmospheric situations in « stand-alone » approaches.

Next step: Observing System Simulation Experiments (OSSEs).

Objectives: evaluate the impact of IASI-NG (with the latest specification) in NWP assimilation while giving the opportunity to evaluate retrievals of atmospheric species and climate variables in realistic situations.

Team: CNRM-GAME, LMD, LATMOS, LISA, LA

First steps: selection of orbits, gathering information of atmospheric components (clouds, aerosols, trace gases, etc.)



The work done by French team ('MENINGE') has been summarized in a report that was used for the approval of the IASI-NG mission by CNES board.

This report is being adapted to an article (Crevoisier et al., TBS AMT): Towards IASI-New Generation: impact of improved spectral resolution and radiometric noise on the retrieval of thermodynamics, chemistry and climate variables

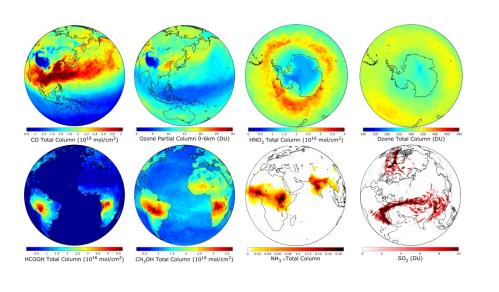
According to the CNES/EUMETSAT agreement, ISSWG has officially taken other the responsibility for the scientific preparatory work on IASI-NG (similarly to what was done for IASI).

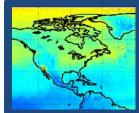
First task: writing a IASI-NG Science Plan

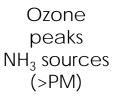
C. Camy-Peyret and J. Eyre for the ISSWG 1998

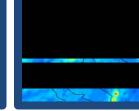
Numerical Weather Prediction

What worked best than what we thought

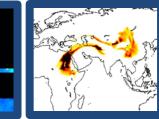

- Assimilation techniques have evolved a lot between 1998 and 2006 ! (bias correction, variational techniques, etc.)
- IASI LW T and WV assimilated in most global NWP models
 - Clear pixel...
 - And also clear channels in cloudy pixels
 - ... and cloud-affected radiances !
- Assimilation of ozone channels at some centres
- Assimilation in convective scale models, at high spatial density
- Large positive impact on forecasts, on top of assimilating numerous other instruments (good synergy with other instruments)


Atmospheric composition




•What worked best than what we thought

- •
- Much more molecules, even reactive species
- Sensibility close to ground if thermal contrast
- Operational applications: SO₂/ash volcanic plumes, pollution forecasts
- Societal applications (VACCS, etc.).



Long-

range pollution

Aviation threat

Atmospheric composition

•What worked less than what we thought/work still needed

- Coupled retrieval of IASI and GOME-2 to improve vertical information on O₃
- Retrieval of trace gases over cloudy pixels
- Assimilation of radiances for atmospheric composition studies
- OSSE difficult to do as we miss high polluted profiles

Climate

With IASI: 5 years of observation: no climate studies per se yet!

... But : climatologies of several ECVs and exceptional spectral and radiometric stability.

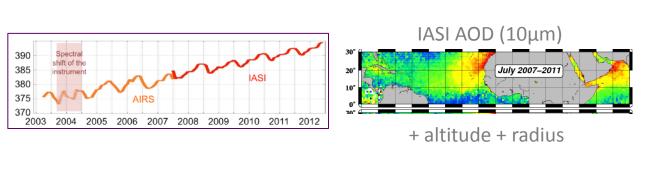
 \rightarrow Potential for long-term monitoring and study of climate.

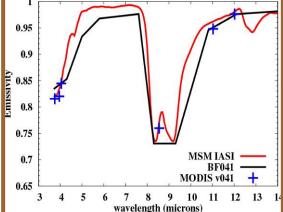
With IASI-NG:

- Opportunity to expend the coverage after the MetOp series.
- -For long-term studies, the same level of stability will be needed.
 - \rightarrow Need for proper monitoring and traceability of calibration.

Climate

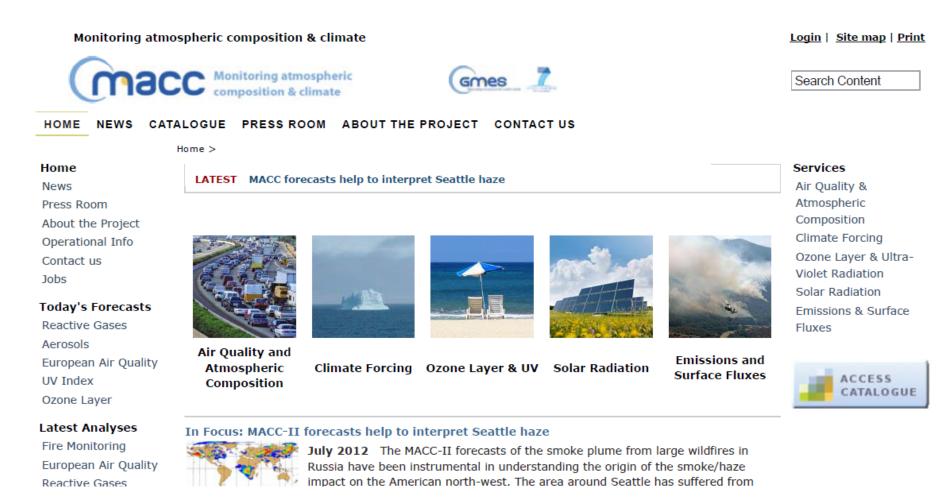
IASI 1998 Priorities for IASI research and development:


- -IR radiation budget.
- High
- -heating rates.
- -cirrus properties.
- Low -climatologies: WV, O₃, CH₄, N₂O, CO, CFCs and cloud parameters.
 - -radiative forcing: UV+IR O₃, latitudinal and seasonal.
 - -aerosol properties: AOD and surface characteristics.


Climate

- -IR radiation budget.
- High
- -heating rates. -cirrus properties.
- -climatologies: WV, O₃, CH₄, N₂O, CO, CFCs and cloud parameters, CO₂
 -radiative forcing: UV+IR O₃, latitudinal and seasonal.

-aerosol properties: AOD and surface characteristics.



9

 $\Theta \Theta$

IASI-NG surroundings

• **GMES:** NWP + atmospheric composition + climate

• **GMES:** NWP + atmospheric composition + climate

• Focus of many agencies on climate... with a multiplication of ad hoc committees.

In 2010: GCOS created a list of 50 Essential Climate Variables required to support the work of the UNFCCC and the IPCC (international exchange is required for both current and historical observations).

- •ESA Climate Change Initiative.
 •WDAC (WCRP Data Advisory Council)
 •GSICS (Global Space-based Inter-Calibration System) of CGMS and WMO.

The promotion and exploitation of IASI-NG will have to be performed in this context.

•Strong relationships between NWP, atmospheric composition and climate through many variables.

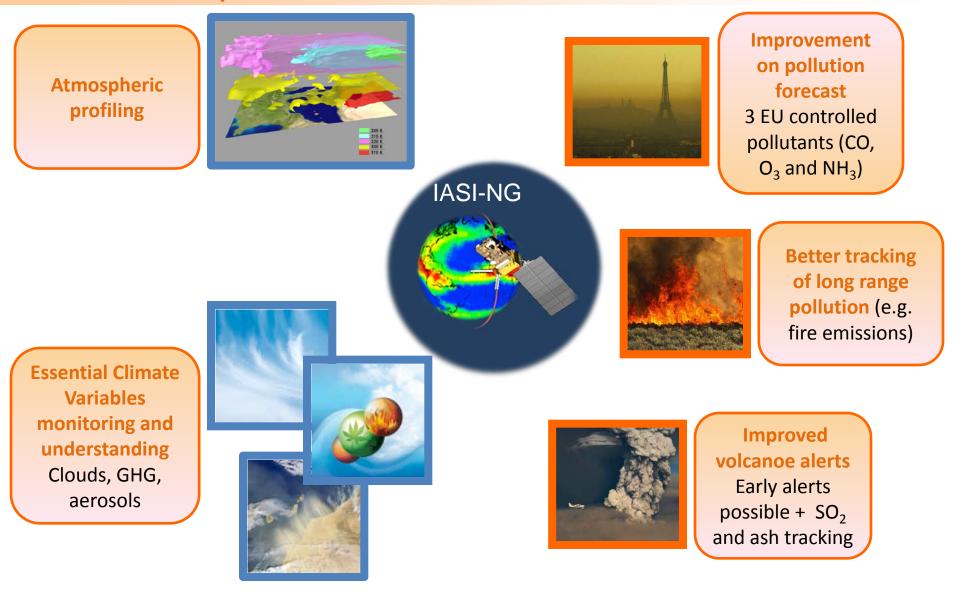
•Cal/Val activities and traceability are the key to success.

 \rightarrow Properly archived ATBD are needed.

•Coupling of IASI-NG with companion instruments: both in terms of Level 2 and Level 1 (MW/IR, SWIR/IR, Vis/IR, UV/IR).

•Coupling of variables: clouds+aerosols, gases, cirrus+WV, etc.

•Study of atmospheric and climate processes (various variables + night/day/land/sea!!).


•Design of simulators by coupling atmospheric/climate models and IASI characteristics: clouds, radiative budget, potentially GHG.

•Spectroscopy (including aerosols characteristics).

•RT modeling:

 -line-mixing (CO₂, CH₄)
 -non-LTE → both 15 µm and SW.
 -solar contamination → SW.

IASI-NG improved contributions to...

IASI-NG has the potential for strongly benefiting the NWP, chemistry and climate communities, in addition to assuring the continuity of high quality observations delivery.