USING GPS RADIO OCCULTATION IN THE VALIDATION OF IR SOUNDINGS FROM IASI, AIRS, AND CRIS

Robert Knuteson, Michelle Feltz*,
Steve Ackerman, Hank Revercomb, and Dave Tobin
Uni. of Wisconsin-Madison
Space Science and Engineering Center
Department of Atmospheric and Oceanic Sciences

IASI Workshop 07 February 2013

OUTLINE

- CLARREO climate benchmark concept
- Space/Time L2 Matchup Approach
- Spatial Analysis
- Temporal Analysis
- Preliminary Results
- Conclusions

CLARREO IR and GPS Benchmark Concept

- GPS and IR have independent SI traceability paths (Time standard vs Temperature standard)
- GPS and IR have unique sampling characteristics which are complementary.
- A combined IR and GPS dataset could be used to assess the accuracy of a UTLS temperature climatology in either dataset individually.
- These are essential elements for making irrefutable claims about atmospheric temperature trends.

UTLS Temperature

- CMIP3 and CMIP5 provide Global Climate Model (GCM) predictions for 2000-2100
- Both positive and negative trends are predicted up to 0.05 K/yr at 100 mb.
- To detect a trend of 0.5 K/decade requires measurement accuracy between multiple satellite sensors of about 0.1 K (not to exceed).
- How can we PROVE we are achieving this with IR soundings? Compare with a completely independent measurement methodology, i.e. GPS radio occultation.

UTLS Temperature: 100 mb level

• The Equator is much colder at 100 mb than the mid-latitudes and polar regions

UTLS Temperature 100 mb Trends: 100 years (2000-2100)

• Both positive and negative trends are predicted up to 0.05 K/yr.

COSMIC GPS RO Network (U.S./Taiwan)

~ 1000 vertical Temperature profiles per day in 2007-2011

COSMIC stated "dry" temperature accuracy is 0.1 K in the range 30 mb to 300 mb (above the effect of H2O)

Spatial/Temporal L2 Matchup

File-based Matchup Method

- 1) Step through each COSMIC data file.
- 2) Find sounding data granule where COSMIC profile lat/lon is within granule bounding box.
- 3) Check that COSMIC profile is within 1 hour of sounding granule (if not then reject profile).
- 4) Record COSMIC profile data file and sounding data file as a "matchup".

 6.6% of the COSMIC profiles on this day are within 1 hour of a coincident AIRS observation.

AIRS/Aqua

CrIS/NPP

IASI/Metop-A

Spatial Analysis

Consider three spatial matchup methods:

- 1) Closest sounding to the COSMIC 100 mb level Note: the perigee point reported in the COSMIC profile file header can be hundreds of km away from the 100 mb level!
- 2) Circle of radius 150 km center centered on closest sounding (approx. accounts for horizontal averaging).
- 3) Ray path "ribbon" method (accounts for both horizontal averaging (300 km) and GPS RO profile lat/lon change versus height (500 km).

GPS RO Profile matchup with IR sounding (30, 100, 300 mb)

GPS RO Profile matchup with IR sounding (30, 100, 300 mb)

- The black square is the closest IR profile to the COSMIC at 100 mb.
- The pink circle has radius of 150 km centered at the closest profile.
- The black line is the ray path and the red dots are the ray path IR soundings

Example #1: "typical COSMIC"

Example #1: "typical COSMIC"

Example #2: "vertical COSMIC"

Example #2: "vertical COSMIC"

Example #3: "flat COSMIC"

Example #3: "flat COSMIC"

NOAA IASI - COSMIC (90S-90N) GLOBAL

22 Oct.2012(1 day)

NOAA IASI - COSMIC (60N-90N) ARCTIC

22 Oct.2012(1 day)

NOAA IASI - COSMIC (30N-60N) N. Mid-Lat

NOAA IASI - COSMIC (30S-30N) TROPICS

22 Oct.2012(1 day)

NOAA IASI - COSMIC (30S-60S) S. Mid-Lat

22 Oct.2012(1 day)

NOAA IASI - COSMIC (30S-60S) Antarctic

22 Oct.2012(1 day)

Temporal Analysis

Uncertainty in the Estimated Bias & RMS

as a function of number of samples (time)

Temporal Analysis: Uncertainty in the Estimated Bias AIRS – COSMIC Temperature (30 mb level)

- 100 samples (1.5 days) for statistical fluctuations in bias to damp out
- 300 sample (5 days) to converge to stable bias value

Temporal Analysis: Uncertainty in the Estimated RMS AIRS – COSMIC Temperature (30 mb level)

- 100 samples (1.5 days) for statistical fluctuations in RMS to damp out
- 300 sample (5 days) to converge to stable RMS value

Preliminary Results: CrIS + ATMS = CrIMSS

The following slides were presented by Chris Barnet of NOAA to a JPSS review panel on the status of the CrIMSS data product in January 2013.

Provisional Maturity Evaluation (20/35) Introduction to COSMIC Comparison

- Next Set of slides (courtesy of Bob Knuteson and Michelle Feltz, Univ. of Wisconsin) show IDPS CrIMSS EDR products relative to co-located GPS sondes
 - AIRS results are shown in top panels
 - CrIMSS results from Mx5.3 and Mx6.4 are shown in bottom panels
- GPS comparisons are only valid from ~300 hPa to 30 hPa
 - In general, GPS results are an independent confirmation of what we have shown relative to ECMWF
 - Statistics are similar to the heritage AIRS EDR products
 - CrIMSS EDR has larger biases
 - Because IDPS system does not have ATMS bias corrections
 - CrIMSS EDR has slightly larger standard deviation (SDV)
 - IDPS code is not fully optimized

Provisional Maturity Evaluation (21/35)

NOAH

Matchups were found between COSMIC and CrIMSS retrievals of temperature (collocated and within 1 hour). The COSMIC data is used a common reference to compare CrIMSS and AIRS retrievals on a daily basis. The COSMIC dry temperature is valid in the range 30 – 300 mb.

Illustration of the closest (black square), circular (blue circle), and ray path (red dots) methods for a single GPS profile (green) for the circle centered at the GPS RO level of 100 hPa

http://www.cosmic.ucar.edu/launc h/GPS_RO_cartoon.jpg

One Day of COSMIC Profiles

Provisional Maturity Evaluation (22/35) GPS comparisons: Global (90S-90N)

Provisional Maturity Evaluation (23/35) GPS comparisons: N.H. Polar (60N-90N)

and Robert Knuteson (see AMS presentation for details).

Provisional Maturity Evaluation (24/35) GPS comparisons: N.H. Mid-Lat (30N-60N)

Provisional Maturity Evaluation (25/35) GPS comparisons: Tropical (30S-30N)

Provisional Maturity Evaluation (26/35) GPS comparisons: S.H. Mid-Lat (30S-60S)

Provisional Maturity Evaluation (27/35) GPS comparisons: S.H. Polar (60S-90S)

CONCLUSIONS

- Careful comparison of the spatial geometry of the L2 matchup as a function of height is important for individual matchup comparisons but this effect is less important for large sample numbers.
- The current COSMIC network provides sufficient number of samples to allow for daily global statistical monitoring however 30 degree latitude zones require 3-5 days or more for stable statistics.
- The GPS RO has already contributed to CrIMSS (CrIS+ATMS) product validation and has been applied successful to AIRS and IASI data records.
- Using matched IR/GPS RO profiles shows promise for estimating an unbiased measurement uncertainty of a combined GPS/IR dataset with accuracies suitable for detecting temperature trends in the UTLS region.