Infrared continental surface emissivity spectra and skin temperature retrieved from IASI observation

Capelle V., Chédin A., Péquignot E., N. A Scott Schlüssel P., Newman S.

IASI Conference 2013

Introduction

Why Focusing on T_s and ε_s ?

- > To improve the determination of the troposphere properties:
 - √Thermodynamic properties (T, H₂O, etc...)
 - √ aerosols
 - √ Trace gases concentration
- > Essential to estimate the radiative budget
- ➤ Necessary to have an accurate spectral estimation of emissivity (emissivity often considered as constant).

Advantage of using 2nd generation infrared sounders (AIRS, IASI)?

- > Can provide emissivity spectra at high resolution
- ➤ Global view and long-term monitoring of continental surfaces (e.g.: Sahel evolution)

Multi Spectral Method (MSM)

Results for surface temperature:

Comparison with MODIS and the ECMWF forecast data

IASI-MODIS: 0.8 +/-1.3 K after removing the diurnal effect of about 1 K in summer IASI-FC: -0.4 +/- 2 K (better in summer than in winter)

Results for the infrared surface emissivity spectrum:

comparison with MODIS and the UW baseline fit database

- The accurate shape of the spectrum characterizes the observed surface (high resolution in the quartz reststrahlen 8 μm band is important)
- ➤In general, good agreement with MODIS low resolution emissivities
- ➤ The **high-spectral resolution** (0.05 µm from 3.7 to 14 µm) IASI/MSM method actually reproduces the local maximum of emissivity at 8.65 µm observed in the high spectral resolution laboratory spectra for sand soil.

Application of the IASI-MSM at local scale:

Comparison with ARIES emissivity from the MEVEX Oman campaign, May 2009

Emissivity measurements during the aircraft MEVEX campaign:

IR radiances collected by ARIES interferometer on-board the FAAM BAe146-301 Atmospheric Research Aircraft

• During low-level flights, the surface emissivity can be derived directly from the hyperspectral data.

=> Two flights at low-level were selected as suitable for emissivity retrieval from ARIES and compared here with IASI-MSM emissivity.

Application of the IASI-MSM at local scale:

Comparison with ARIES emissivity from the MEVEX Oman campaign, May 2009

the large local variations of emissivity at this wavelength.

Application of the IASI-MSM:monitoring of semi-arid continental surfaces

Case of Sahel

- ightharpoonup Emissivity correlates with the NDVI / soil moisture / precips : emissivity increases with vegetation and/or the soil water content + anti correlation T_{surf} / ϵ_{surf}
- ➤ Opportunity of long-term monitoring of continental surfaces (MetOp1, 2, 3, etc...) at global scale.
- > Anomaly <0 for ε_{surf} , NDVi, precip (and >0 T_{surf}) during El Niño Spring 2009- Spring 2010.

Application of the IASI-MSM: monitoring of semi-arid continental surfaces

Case of Australia

- ➤ Example of a drastic change: severe drought until 2009, followed by 3 large rainfall seasons in 2009, 2010 and 2011, causing a net increase in the vegetation (and thus, of emissivity).
- ➤ The change in precip. anomaly <0 in 2009, and >0 in 2010/2011 corresponds to the succession between El Niño/La Niña event.

Application of the IASI-MSM: Dust properties retrieval over continents

Emissivity database plays an important role in the determination of dust properties:

- In the cloud/aerosol flag elaboration:
 - ⇒The flag is based on BT differences and application of thresholds: each of them depends on the surface emissivity of the channel considered.
- In the dust aerosol inversion itself, especially over desert:
 - \Rightarrow The channels sensitive to dust are also sensitive to surface properties (T_{surf} / ϵ_{surf})
 - ⇒An error of 5% on the emissivity can lead to an error of more than 0.2 in AOD.

Comparison between 10 µm coarse-mode IASI AOD and MISR 0.55 µm AOD

Conclusions

- **Final product**: High spectral resolution continental surface emissivity spectra (0.05 μm from 3.7 to 14 μm), and surface temperature from July 2007 to December 2012 (continuing).
- Results at global scale :
 - ➤ Comparisons of T_s with MODIS and ECMWF fcst and of emissivity with MODIS have been performed with good results.
 - > The resulting emissivity spectra well reproduce small spectral variations, observed in the laboratory spectra.
- Results at local scale:
 - ➤ Good agreement with *in situ* measurements from ARIES
 - ➤ IASI-MSM emissivity reproduces the large local variations seen by ARIES over small area

Perspectives

- Improvement of the studies at local scale:
 - > Why IASI-MSM emissivity is in general slightly greater than the ARIES one at 12 μm (<0.02)?
 - Comparison with other validation campaign, if available
- Monitoring of continental surfaces (vegetation cover, drought..):
- ➤ Using the strong correlation between soil properties (vegetation, moisture) and emissivity to follow the evolution of the surface properties
- Extension of the database to the mid-lat:
 - > The cloud/aerosol flag in under validation for mid latitude regions
 - > The database will be soon prepared and started to validate.