3rd IASI Conference Hyères, 4-8 February 2013

Recent evolution of mid-tropospheric CH₄ in the tropics: 5 years from MetOp-A/IASI

<u>C. Crevoisier¹</u>, R. Armante¹, T. Machida², Y. Sawa³, H. Matsueda³, T. Schuck⁴,T. Thonat¹, L. Crépeau¹, N. A. Scott¹, and A. Chédin¹

¹LMD/CNRS, ²NIES, ³MRI, ⁴MPI

http://ara.abct.lmd.polytechnique.fr

Why monitoring CH₄ from space?

Methane is the third most important greenhouse gas in the atmosphere, after water vapor and CO₂, and is responsible for about 20% of the total radiative forcing by long-lived greenhouse gases.

CH₄ average concentration mostly reflects the balance between **emissions from the surface** (**wetland emissions**, **rice paddies**) and **destruction by OH** in the troposphere.

Observations of methane from the surface and from space

Surface stations

since July 2007 | mid-tropo. column of CH₄ over land and sea, day and night

+ IASI-B, -C, IASI-NG....

SCIAMACHY 2002-2012 | total column of CH₄ mostly over land, daytime

TANSO-FTS

since 2009 total column of CH₄ over land, daytime

Retrieval of CH₄ from IASI

LMD

- Retrieval procedure (Crevoisier et al., 2009):
- Use of IASI channels around 1305 cm⁻¹.
- -Non linear inference scheme based on neural networks (Chédin et al., 2003).
- -Based on the 4A RT code and the latest edition of the GEISA database.
- -Radiative biases are computed using the ARSA database.
- -CH₄ and T(p) are intimately correlated in the IR.
 - → Use of IR (IASI) and MW (AMSU) observations to decorrelate T from gas variations.
- -The decorrelation between T/gas is easier to do in the tropics.
 - \Rightarrow better precision in the tropical region.
- •We retrieve a mid-tropospheric content:
- clear sky only (no clouds, no aerosols)
- by day and night
- over land and over sea

We have now ~ 5.5 years (July 2007 – December 2012) of monthly averaged mid-tropospheric **CH**₄ integrated content from **IASI**.

Mid-tropospheric CH₄ from IASI

Zonally averaged tropical distribution of mid-tropospheric CH₄ as retrieved from IASI from July 2007 to June 2012

Comparison with CONTRAIL aircraft measurements

NB: IASI $CH_4 \sim 6-16 \text{ km}$ aircraft $CH_4 \sim 10 \text{ km}$

Comparison with CARIBIC aircraft measurements

Monitoring of IASI CH₄ at ECMWF

- •GOSAT CH₄ total column fields are now assimilated within the ECMWF IFS system.
- •IASI CH₄ partial column are monitored by comparing them with the analysis.

Courtesy of S. Massart

Monitoring of IASI CH₄ at ECMWF

- •GOSAT CH₄ total column fields are now assimilated with the ECMWF IFS system.
- •IASI CH₄ partial column are monitored by comparing them with the analysis.

Monitoring of IASI CH₄ at ECMWF

- •GOSAT CH₄ total column fields are now assimilated with the ECMWF IFS system.
- •IASI CH₄ partial column are monitored by comparing them with the analysis.

Monitoring Assimilation of IASI CH₄ at ECMWF

Breaking news: IASI CH₄ fields are now being assimilated within IFS!

Estimation of CH₄ surface emissions

IASI CH₄ is also used within a Bayesian inversion system in order to infer global and regional methane fluxes up to the grid-point weekly scale.

	Global emissions	Sigma
	(Tg/yr)	(Tg/yr)
Prior	551	± 53
SURFACE	529	
IASI	531	
GOSAT Leicester	571	± 29
SCIAMACHY	573	± 26

- •Decrease of global emissions for IASI and surface.
- •Increase of global emissions for SCIAMACHY and GOSAT.

Growth rate of mid-tropospheric CH₄ from IASI

1107 1201

Procedure (following e.g. Dlugokencky et al., 1994):

- •Fit: Polynomial trend + 4 harmonics / filering by low-pass filters.
- •Deseasonalized long-term trend = polynomial trend + filtered residuals.
- •Instantaneous growth rate = derivative of this function.

Growth rate of mid-tropospheric CH₄ from IASI

Very good agreement between IASI and surface tropical growth rate

IASI has the potential to follow methane trend on the long-term

Growth rate of mid-tropospheric CH₄ from IASI

Annual increase (ppbv yr⁻¹) in CH₄

	IASI		Surface (Dlugokencky et al. 2009)		
Year	20N:20S	20N:EQ	EQ:20S	NH	SH
2007	9.5 ± 2.8	8.2 ± 1.8	10.7 ± 2.5	7.3 ± 1.3	9.2 ± 0.3
2008	6.9 ± 1.3	6.0 ± 1.2	7.9 ± 1.2	8.1 ± 1.6*	
2009	1.0 ± 0.8	-0.3 ± 0.5	2.3 ± 0.7		
2010	4.2 ± 0.9	3.6 ± 0.5	4.8 ± 0.8		
2011	$2.2. \pm 0.7$	2.5 ± 0.7	1.8 ± 0.7		

- •Trend of +10 ppb.yr⁻¹ in 2007, which decreases throughout 2008-2009.
- •The analysis of ECMWF precipitation fields reveals that precipitation has continuously decreased in wetland tropical regions over 2007-2009, the total rain fall in 2010 reaching a similar value to that of 2007.

Regional level: the Amazonian case

TRMM annual precipitation (mm)

Maximum water deficit

In 2010: severe drought in Amazonia

→ Decrease in wetland emission

Decrease of CH_4 of ~10ppbv detected by IASI.

Multivariate ENSO index

Atlantic Multidecadal Oscillation

Impact of climate variability on greenhouse gases

The 2010 very dry conditions also induced an increase in **fire**...

... well seen on CO and CO₂ fields derived from IASI

IASI asset: simultaneous observation of CH₄, CO and CO₂.

Conclusion

- IASI can provide valuable information on methane cycle:
 - Long-term evolution (IASI-1, 2, 3 + IASI-NG)
 - \rightarrow IASI is part of the ESA CCI GHG (for both CH₄ and CO₂)

- Information on surface emissions (even if we retrieve only CH₄ in the mid-troposphere).

- → Assimilation within the IFS system.
- → Added value to SWIR observations: both day and night, both land and sea
- Link to climate factors, even at regional scale.
- The simultaneous retrieval of several gases is a clear asset to allow monitoring local to global events.
- Perspectives:
 - evaluation of the impact of GHG on radiative budget.
 - CH₄ at high latitudes ?
 - Synergy with lidar measurements (CNES/DLR Merlin mission).