3rd IASI Conference Hyères, 4-8 February 2013 # Recent evolution of mid-tropospheric CH₄ in the tropics: 5 years from MetOp-A/IASI <u>C. Crevoisier¹</u>, R. Armante¹, T. Machida², Y. Sawa³, H. Matsueda³, T. Schuck⁴,T. Thonat¹, L. Crépeau¹, N. A. Scott¹, and A. Chédin¹ ¹LMD/CNRS, ²NIES, ³MRI, ⁴MPI http://ara.abct.lmd.polytechnique.fr # Why monitoring CH₄ from space? Methane is the third most important greenhouse gas in the atmosphere, after water vapor and CO₂, and is responsible for about 20% of the total radiative forcing by long-lived greenhouse gases. CH₄ average concentration mostly reflects the balance between **emissions from the surface** (**wetland emissions**, **rice paddies**) and **destruction by OH** in the troposphere. # **Observations of methane from the surface and from space** #### **Surface stations** since July 2007 | mid-tropo. column of CH₄ over land and sea, day and night + IASI-B, -C, IASI-NG.... SCIAMACHY 2002-2012 | total column of CH₄ mostly over land, daytime **TANSO-FTS** since 2009 total column of CH₄ over land, daytime #### Retrieval of CH₄ from IASI LMD - Retrieval procedure (Crevoisier et al., 2009): - Use of IASI channels around 1305 cm⁻¹. - -Non linear inference scheme based on neural networks (Chédin et al., 2003). - -Based on the 4A RT code and the latest edition of the GEISA database. - -Radiative biases are computed using the ARSA database. - -CH₄ and T(p) are intimately correlated in the IR. - → Use of IR (IASI) and MW (AMSU) observations to decorrelate T from gas variations. - -The decorrelation between T/gas is easier to do in the tropics. - \Rightarrow better precision in the tropical region. - •We retrieve a mid-tropospheric content: - clear sky only (no clouds, no aerosols) - by day and night - over land and over sea We have now ~ 5.5 years (July 2007 – December 2012) of monthly averaged mid-tropospheric **CH**₄ integrated content from **IASI**. #### Mid-tropospheric CH₄ from IASI # Zonally averaged tropical distribution of mid-tropospheric CH₄ as retrieved from IASI from July 2007 to June 2012 #### **Comparison with CONTRAIL aircraft measurements** NB: IASI $CH_4 \sim 6-16 \text{ km}$ aircraft $CH_4 \sim 10 \text{ km}$ #### **Comparison with CARIBIC aircraft measurements** #### Monitoring of IASI CH₄ at ECMWF - •GOSAT CH₄ total column fields are now assimilated within the ECMWF IFS system. - •IASI CH₄ partial column are monitored by comparing them with the analysis. Courtesy of S. Massart ## Monitoring of IASI CH₄ at ECMWF - •GOSAT CH₄ total column fields are now assimilated with the ECMWF IFS system. - •IASI CH₄ partial column are monitored by comparing them with the analysis. #### Monitoring of IASI CH₄ at ECMWF - •GOSAT CH₄ total column fields are now assimilated with the ECMWF IFS system. - •IASI CH₄ partial column are monitored by comparing them with the analysis. # **Monitoring** Assimilation of IASI CH₄ at ECMWF #### Breaking news: IASI CH₄ fields are now being assimilated within IFS! #### Estimation of CH₄ surface emissions IASI CH₄ is also used within a Bayesian inversion system in order to infer global and regional methane fluxes up to the grid-point weekly scale. | | Global emissions | Sigma | |-----------------|------------------|---------| | | (Tg/yr) | (Tg/yr) | | Prior | 551 | ± 53 | | SURFACE | 529 | | | IASI | 531 | | | GOSAT Leicester | 571 | ± 29 | | SCIAMACHY | 573 | ± 26 | - •Decrease of global emissions for IASI and surface. - •Increase of global emissions for SCIAMACHY and GOSAT. # **Growth rate of mid-tropospheric CH**₄ from IASI 1107 1201 **Procedure** (following e.g. Dlugokencky et al., 1994): - •Fit: Polynomial trend + 4 harmonics / filering by low-pass filters. - •Deseasonalized long-term trend = polynomial trend + filtered residuals. - •Instantaneous growth rate = derivative of this function. # **Growth rate of mid-tropospheric CH**₄ from IASI Very good agreement between IASI and surface tropical growth rate IASI has the potential to follow methane trend on the long-term #### **Growth rate of mid-tropospheric CH**₄ from IASI #### Annual increase (ppbv yr⁻¹) in CH₄ | | IASI | | Surface
(Dlugokencky
et al. 2009) | | | |------|----------------|----------------|---|---------------|---------------| | Year | 20N:20S | 20N:EQ | EQ:20S | NH | SH | | 2007 | 9.5 ± 2.8 | 8.2 ± 1.8 | 10.7 ± 2.5 | 7.3 ± 1.3 | 9.2 ± 0.3 | | 2008 | 6.9 ± 1.3 | 6.0 ± 1.2 | 7.9 ± 1.2 | 8.1 ± 1.6* | | | 2009 | 1.0 ± 0.8 | -0.3 ± 0.5 | 2.3 ± 0.7 | | | | 2010 | 4.2 ± 0.9 | 3.6 ± 0.5 | 4.8 ± 0.8 | | | | 2011 | $2.2. \pm 0.7$ | 2.5 ± 0.7 | 1.8 ± 0.7 | | | - •Trend of +10 ppb.yr⁻¹ in 2007, which decreases throughout 2008-2009. - •The analysis of ECMWF precipitation fields reveals that precipitation has continuously decreased in wetland tropical regions over 2007-2009, the total rain fall in 2010 reaching a similar value to that of 2007. #### **Regional level: the Amazonian case** TRMM annual precipitation (mm) Maximum water deficit In 2010: severe drought in Amazonia → Decrease in wetland emission Decrease of CH_4 of ~10ppbv detected by IASI. #### Multivariate ENSO index #### Atlantic Multidecadal Oscillation #### **Impact of climate variability on greenhouse gases** The 2010 very dry conditions also induced an increase in **fire**... ... well seen on CO and CO₂ fields derived from IASI IASI asset: simultaneous observation of CH₄, CO and CO₂. #### **Conclusion** - IASI can provide valuable information on methane cycle: - Long-term evolution (IASI-1, 2, 3 + IASI-NG) - \rightarrow IASI is part of the ESA CCI GHG (for both CH₄ and CO₂) - Information on surface emissions (even if we retrieve only CH₄ in the mid-troposphere). - → Assimilation within the IFS system. - → Added value to SWIR observations: both day and night, both land and sea - Link to climate factors, even at regional scale. - The simultaneous retrieval of several gases is a clear asset to allow monitoring local to global events. - Perspectives: - evaluation of the impact of GHG on radiative budget. - CH₄ at high latitudes ? - Synergy with lidar measurements (CNES/DLR Merlin mission).