Monitoring emission, chemistry and transport of vegetation fires from IASI

Yasmina R'Honi¹,

Lieven Clarisse¹, Pierre-François Coheur¹, Valentin Duflot¹, Daniel Hurtmans¹, Yasmine Ngadi¹, Cathy Clerbaux^{1,2} and Solène Turquety³

- ¹ Spectroscopie de l'Atmosphère, Université Libre de Bruxelles, Belgium
- ² UPMC Univ. Paris 06; Université Versailles St.-Quentin; CNRS/INSU, LATMOS-IPSL, Paris, France
- ³ UPMC Univ. Paris 06; CNRS/INSU, LMD-IPSL, Paris, France

Composition?

• Which and how many gases and aerosols are released?

Chemistry

- What controls ozone production in the fire plumes?
- How do aerosols impact photochemistry?
- What controls nitrogen chemistry and acid deposition?

Transport?

• Injection height?

Composition?

• Which and how many gases and aerosols are released?

Chemistry

- What controls ozone production in the fire plumes?
- How do aerosols impact photochemistry?
- What controls nitrogen chemistry and acid deposition?

Transport?

• Injection height?

Large uncertainties in all parameters.

→ How can IASI contribute?

OUTLINE...

Local scale :

- 1. Greek Fires Aug. 2007 (Coheur et al., ACP 2009)
- 2. Australian Fires Feb. 2009 (Clarisse et al. GRL 2011)
- 3. Russian Fires Jul.-Aug. 2010 (R'Honi et al., ACPD 2012)
 - Time evolution of the maxima and the average total columns
 - Time evolution in total masses → extra burden due to fires
 → daily emissions as fluxes
 - Enhancement ratios ($\Delta NH_3/\Delta CO$ and $\Delta HCOOH/\Delta CO$)

Global scale :

Artificial Neural Network (ANN) outputs

See poster # 41 : Yasmine Ngadi

Conclusions

Atmospheric composition measurements with IASI hyperspectral sounder

• Fires in Greece – 2007 (Coheur et al., ACP 2009)

Atmospheric composition measurements with IASI hyperspectral sounder

• Fires in Australia – 2009 (Clarisse, R'Honi et al., GRL 2011)

History of thermal infrared sounding of the atmosphere from space

Atmospheric composition measurements with IASI hyperspectral sounder

• Fires in Russia – 2010 (R'Honi et al., ACPD 2012)

- Several hundreds fires occurred around Moscow during one month.
- Temperature reached 35-41°C
- Affected air quality
- Burned area around 10,000 km²
- FRP reached 19,000MW close to Moscow
- Aerosols and trace gases : CO,
 NO₂, O₃, HCHO, HCOOH and NH₃

The period of the fires
July 27 to August 15-18 of 2010

2010 Fires in Central Russia 05 August 2010

CO Total columns from the IASI/MetOp observations (FORLI-CO). Data are averaged on a 0.5°x0.5° grid – only daytime with CO above 2.2 10¹⁸ molecules/cm²

→ Retrieval methods

HCOOH

- Simplified method based on **Brightness Temperature Differences** (Razavi et al., 2010)
- Retrievals with thermal contrast > 5K
- Columns in molec cm⁻²

- FORLI CO-NH₃

(Hurtmans et al., 2012) based on the Optimal Estimation Method.

- Columns in molec cm⁻²

1: seasonality of CO + remote boreal fires

2: agricultural activity + plant growth

3: the Russian wildfires event

→ Extra burden in Tg

Extra burden due to the fires

Dates of 2010

→ Daily emissions in Tg day⁻¹

Dates of 2010

Jacob, 1999.
$$E_{i+1}(X) = \frac{B_{i+1} - B_i e^{-t/\tau_{eff}}}{\tau_{eff} (1 - e^{-t/\tau_{eff}})}$$

E and B: the fluxes and burden respectively at the time i, t: step of one day,

 τ_{eff} : the effective lifetime of the species X.

→ Comparison with literature

Total emitted (Tg)									
	CO	NH_3	НСООН	The state of the s					
Fokeeva et al., 2011	19-26	-	-	AIRS-MOPITT ,standard					
	36-42	-	- AIRS-MOPITT, adjusted						
	12-14	-	-	MODIS, inventory method					
Huijnen et al. (2012)	12.2	-	-	MODIS, inventory method (GFASv1.0)					
Konovalov et al. (2011)	9.7	-	-	MODIS, inverse modeling					
Krol et al. (2012)	20-25	-	-	IASI, inverse modeling					
Yurganov et al. (2011)	26.2	-	-	IASI-OE, standard					
Yurganov et al. (2011)	34-40	-	-	Estimate from 3 different sounders (IASI, AIRS and MOPITT), adjusted					
This work	19-33	0.7-2.6	0.9-3.9	IASI-OE, standard					
Andreae and Merlet, 2001	68	0.88	1.8						
Galloway et al., 2004	-	2.1	-	Total annual emissions of extratropical fires					
Stavrakou et al., 2004	-	-	2.28						

→ Transport / chemistry

Emission factors \rightarrow quantification of trace gas emissions in the fresh fire plumes **Emission ratios** \rightarrow generated from emission factors

As the plume ages, the time evolution of the enhancement ratios gives insight into the chemical loss processes within the plume.

Enhancement Ratios $\Delta X/\Delta CO$

Enhancement ratios $\Delta[X]/\Delta[CO]$									
		Akagi et al., 2010			Good and Yokelson, 2000				
This work					Yokelson et al., 2007				
			In fresh pl	In aged plumes					
		Peat	Boreal	Extratropical					
		lands	Forests	Forests					
$\Delta NH_3/\Delta CO$	(15 – 55) 10 ⁻³	97.7 10 ⁻³	35.6 10 ⁻³	33.2 10-3	-				
ΔΗ COOΗ/ΔCO	(10 – 30) 10 ⁻³	1.8 10-3	2.7 10 ⁻³	2.7 10 ⁻³	(23-29) 10 ⁻³				

LOCAL...

OUTLINE....

- Previous and current studies
 - 1. Greek Fires Aug. 2007 (Coheur et al., ACP 2009)
 - 2. Australian Fires Feb. 2009 (Clarisse et al. GRL 2011)
 - 3. Russian Fires Jul.-Aug. 2010 (R'Honi et al., ACPD 2012)
 - Time evolution of the maxima and the average concentrations
 - Time evolution in total masses → extra burdens due to fires
 → daily emissions as fluxes
 - Enhancement ratios ($\Delta NH_3/\Delta CO$ and $\Delta HCOOH/\Delta CO$)
- Global scale :

Artificial Neural Network (ANN) outputs

See poster # 41 : Yasmine Ngadi

Conclusions

GLOBAL...

ANN outputs

See poster #41 : Yasmine Ngadi

MODIS fire pixels (purple)

FORLI-NH₃ (grey)

ANN's pyrogenic class (yellow)

OUTLINE...

Previous and current studies

- 1. Greek Fires Aug. 2007 (Coheur et al., ACP 2009)
- 2. Australian Fires Feb. 2009 (Clarisse et al. GRL 2011)
- 3. Russian Fires Jul.-Aug. 2010 (R'Honi et al., ACPD 2012)
 - Time evolution of the maxima and the average concentrations
 - Time evolution in total masses → extra burdens due to fires
 → daily emissions as fluxes
 - Enhancement ratios ($\Delta NH_3/\Delta CO$ and $\Delta HCOOH/\Delta CO$)

■ Global scale:

Neural Network (ANN) outputs

Conclusions

CONCLUSIONS...

→ How can IASI contribute?

Observations:

 We have a better understanding of the fires composition due to the high performance of IASI

Emissions estimate:

Even for extreme biomass burning events: Russian fires

- → CO total masses are in good agreement with previous studies;
- → NH₃ and HCOOH total masses calculated in this work are the first reported values

Chemistry:

- Calculation of enhancement ratios
- → Production of secondary species in the fire plumes : **HCOOH**

R'Honi et al. ACPD 2012

