Tropospheric Ozone and Nitrogen Dioxide Measurements in Urban and Rural Regions as Seen by IASI and GOME-2

Gaz Phase Chemistry of Tropospheric Ozone

Photostationary state: cycling has no net effect on ozone

$$NO_2 + h\upsilon \rightarrow NO + O(^3P)$$
 $\lambda < 424 nm$

$$O(^3P) + O_2 + M \rightarrow O_3 + M$$

$$NO + O_3 \rightarrow NO_2 + O_2$$

An additional pathway is needed to convert NO to NO₂ without destroying O₃

Gaz Phase Chemistry of Tropospheric Ozone

Photostationary state: cycling has no net effect on ozone

$$NO_2 + h\upsilon \rightarrow NO + O(^3P)$$
 $\lambda < 424 nm$

$$O(^3P) + O_2 + M \rightarrow O_3 + M$$

$$NO + O_3 \rightarrow NO_2 + O_2$$

Presence of peroxy radicals, from the oxidation of VOCs (hydrocarbons and aldehydes) disturbs O₃-NO-NO₂ cycle

$$NO + RO_2 \rightarrow NO_2 + RO$$

leads to net production of ozone

Measuring tropospheric O₃ on a city scale is a challenging task to be accomplished with satellites because of the horizontal and vertical resolution of the instrument.

Eremenko et al. [2008] and Dufour et al. [2010] have shown that it is possible to study, with infrared sounders, the variation of the tropospheric O₃ column around cities in particular.

Nine cities in the Northern Hemisphere with high anthropogenic emissions

Study duration: 2008-2011

Nine cities in the Northern Hemisphere with high anthropogenic emissions

Wind **Directions: ECMWF**

ERA-interim

Tropospheric O_3 : **IASI**

FORLI-O₃

Tropospheric NO₂: **GOME-2**

O3M-SAF

Example: Madrid

Wind Analysis alamanque 330 300 lalajara 270 240 Talavera de la Reina **Urban Region**

48 Monthly averaged wind direction angles between the surface and 350 hPa blowing from Madrid for the period of 2008-2011

4. Results

Wind direction patterns used in this study are from ERA-Interim archive at ECMWF (u- and v-components of horizontal wind).

Example: Madrid

IASI Ozone Measurements

Global distributions of O_3 vertical profiles are retrieved in near real time using an exclusive radiative transfer and retrieval software for the IASI O_3 product, the Fast Optimal Retrievals on Layers for IASI (FORLI- O_3) [Hurtmans et al., 2012].

1. Introduction 2. Study Area Selection 3. Measurements

IASI Ozone Measurements

GOME-2 Nitrogen Dioxide Measurements

GOME-2

- On board of the MetOp-A platform like IASI
- Nadir-scanning UV/visible spectrometer
- Swath width of 1920 km
- Nominal ground pixel size of 80x40 km² (global coverage every 1.5 days)

The operational tropospheric NO₂ product is provided by the German Aerospace center, in the framework of the EUMETSAT O3M-SAF

Seasonal Cycling of Ozone in Urban Regions

4. Results

Seasonal Cycling of Nitrogen Dioxide in Urban Regions

Tropospheric O₃ and NO₂ in rural regions

Tropospheric O₃ and NO₂ in rural regions

Tropospheric O₃ and NO₂ in rural regions

July

August

Case Study of the 2008 Olympic Games

+

Beijing Location is indicated with a "+" marker.

Large decrease in NO₂, while a no significant decrease for O₃

Large decrease for O₃ in the rectangular box in July and September

Four years of tropospheric O_3 and NO_2 observations provided by the IASI and GOME-2 mission are analyzed:

 Consistent seasonal behavior of tropospheric O₃, with a peak in spring due to stratospheric intrusion and another higher one in summer due to the photochemical production.

- Consistent seasonal behavior of tropospheric O₃, with a peak in spring due to stratospheric intrusion and another higher one in summer due to the photochemical production.
- Tropospheric NO₂ over the same cities shows a different seasonal behavior with higher values during winter, and lower during summer.

- Consistent seasonal behavior of tropospheric O₃, with a peak in spring due to stratospheric intrusion and another higher one in summer due to the photochemical production.
- Tropospheric NO₂ over the same cities shows a different seasonal behavior with higher values during winter, and lower during summer.
- A reasonable linear relation is detected in summer between O₃ and NO₂, and linearity is lost in winter.

- Consistent seasonal behavior of tropospheric O₃, with a peak in spring due to stratospheric intrusion and another higher one in summer due to the photochemical production.
- Tropospheric NO₂ over the same cities shows a different seasonal behavior with higher values during winter, and lower during summer.
- A reasonable linear relation is detected in summer between O₃ and NO₂, and linearity is lost in winter.
- NO₂ tropospheric column shows a decrease in rural areas due to absence of local sources while rural O₃ column persists.

- Consistent seasonal behavior of tropospheric O₃, with a peak in spring due to stratospheric intrusion and another higher one in summer due to the photochemical production.
- Tropospheric NO₂ over the same cities shows a different seasonal behavior with higher values during winter, and lower during summer.
- NO₂ tropospheric column shows a decrease in rural areas due to absence of local sources while rural O₃ column persists.
- A reasonable linear relation is detected in rural regions in summer between O₃ and NO₂, and linearity is lost in winter.
- Analysis of the Beijing Olympic Games, suggests that even when the concentration of precursors of O₃ was well decreased, no significant decrease of tropospheric O₃ was observed.

- Consistent seasonal behavior of tropospheric O₃, with a peak in spring due to stratospheric intrusion and another higher one in summer due to the photochemical production.
- Tropospheric NO₂ over the same cities shows a different seasonal behavior with higher values during winter, and lower during summer.
- NO₂ tropospheric column shows a decrease in rural areas due to absence of local sources while rural O₃ column persists.
- A reasonable linear relation is detected in summer between O₃ and NO₂, and linearity is lost in winter.
- Analysis of the Beijing Olympic Games, suggests that even when the concentration of precursors of O₃ was well decreased, no significant decrease of tropospheric O₃ was observed.
- This work is thus a new step showing that infrared satellite spectrometers, such as IASI, are capable to track pollution by tropospheric O₃ on a city scale and provide relevant information for air quality studies.

Thank you!

http://www.airparif.asso.fr/_pdf/dossier_ozone.pdf

For more info please check: Safieddine et al., 2013 (submitted to JGR)