

Contents

Introduction

State of the art of the assimilation of cloud-affected infrared radiances at Météo-France

Comparison of two channel selection methodologies

- Selection based on the Degrees of Freedom of the Signal (DFS)
- Physical selection based on the sensitivity of the brightness temperature to a perturbation of the cloud variables

Sensitivity study

- To the ice optical parametrization in RTTOV
- Weather regime dependency

Context of the study

- Experimental campaign **HyMeX** [1]: better understanding of the hydrological cycle in the Mediterranean Sea.
- Convective scale model AROME W MED:
 2.5 km grid size (Fourrié et al, 2012)
- 80 % of satellite data are covered by clouds.

New developments to improve the assimilation of cloud-affected radiances from the hyperspectral infrared sounder IASI in the convective scale model AROME.

State of the art for the treatment of cloudaffected radiances

Operational assimilation

- Use two cloud parameters: cloud top pressure (CTOP) and effective cloud fraction (Ne) to constrain the assimilation (Guidard, Fourrié et al, 2011)
 - + Use of cloud-affected channels
 - Problems for the detection of low level clouds and thin cirrus clouds, simplified modelling of clouds (single layers of opaque clouds)

State of the art for the treatment of cloudaffected radiances

Operational assimilation

- Use two cloud parameters: cloud top pressure (CTOP) and effective cloud fraction (Ne) to constrain the assimilation (Guidard, Fourrié et al, 2011)
 - + Use of cloud-affected channels
 - Problems for the detection of low level clouds and thin cirrus clouds, simplified modelling of clouds (single layers of opaque clouds)

New developments

- Use of microphysical variables for the assimilation: liquid water content (lwc) and ice water content (iwc).
- + Better modelling of clouds (multi layer, mixed phase).
- Linearity

Encouraging results have been found by Martinet et al (2012)¹ with only 77 channels.

Are these channels suitable for cloudy retrievals? Can we improve the retrieval of microphysical variables with new channels sensitive to cloud variables?

1: Martinet et al 2012: Towards the use of microphysical variables for the assimilation of cloud-affected infrared radiances, QJRMS, DOI: 10.1002/qj.2046.

Toujours un temps

Methodology

➤ Evaluation of the selection of the **366** IASI channels used operationally at the European Centre for Medium-Range Weather Forecast (**ECMWF**). This selection was performed with the Degrees of Freedom of the signal (DFS) as the figure of merit on clear atmospheric profiles (Collard and McNally 2009).

- Addition of 134 channels sensitive to cloud variables.
 366+134=500 channels: limit of the GTS to provide IASI observations to operational centres.
- ➤ Selection on 15 cloudy profiles from AROME: 5 semi-transparent ice clouds, 5 ice opaque clouds, 5 low liquid clouds.

Comparison of two channel selections

Selection based on the spectral sensitivity to the perturbation of lwc/iwc

$\Delta BT = BT(x + \delta x) - BT(x)$

- BT response to the perturbation of each atmospheric constituent: lwc, iwc, T,q, Tskin, O₃, CH₄, CO.
- Selection of channels with the highest sensitivity to lwc/iwc variables, the lowest sensitivity to interfering species (T,q...) and the lowest instrumental noise.

Selection based on the DFS

$DFS=tr(I-AB^{-1})$

A: analysis error covariance matrix.

B: background error covariance matrix. (cloudy matrix computed from a 6 member AROME ensemble on convective cases).

- Based on linear estimation theory
- Selection of the channels that most improve the DFS.
- Update of the **B** matrix with the **A** matrix computed after *i* channels have been chosen to take into account redundant information.

lwc/iwc perturbation: + 10%
Ozone perturbation: +10%
Q perturbation: +10%

T perturbation: +1 K

Tskin perturbation: +1 K

Comparison of two channel selections

Selection based on the spectral sensitivity to the perturbation of lwc/iwc

- Only 24 channels shared by the two methods of selection
- Selection in the 3 window regions: 800-1000 cm⁻¹, 1090-1200 cm⁻¹, 1800-2150 cm⁻¹
- Selection of water vapour channels by the DFS (contribution to cloud variables and cross-correlations between lwc/iwc and q in the B matrix).
- For both selections, most of the selected channels are located in the band **1800-2150 cm**-1 (higher wave numbers have been discarded to avoid noisy channels).

Evaluation by mean of 1D-Var retrieval applications in the context of OSSE.

• Use of AROME profiles within homogeneous overcast observations perturbed with a Gaussian noise proportional to the **B matrix**:

$$X=X_{true}+\varepsilon_b B^{1/2}$$

• Simulation of IASI radiances with RTTOV CLD. Perturbation with the IASI instrument noise provided by CNES and radiative transfer model errors.

$$y=H(x_{true})+\varepsilon_{o}R^{1/2}$$

- Use of a background error **B** matrix computed from a 6 member AROME ensemble on **convective cases (Thibaut Montmerle [1])**.
- Comparison of RMSE of the background and the analysis with respect to the « true » profile. 346 channels monitored at ECMWF + new selection of 134 channels (480 channels total).

Evaluation by mean of 1D-Var retrieval applications in the context of OSSE.

- RMSE equivalent with 366 and 500 channels in the case of semi-transparent clouds (not shown)
- Equivalence of the two selections in terms of RMSE.

Temperature and humidity Jacobians

Sensitivity to the ice optical parametrizations in RTTOV-CLD. (Example of the physical selection)

- In RTTOV-CLD, the user must choose what assumption to use to parameterize the effective diameter. 4 parametrizations available: Boudala, McFarquhar, Ou and Liou, Wyser.
- 60% of the selected channels are shared by both parametrizations.
- Small differences are observed.
- No impact on 1D-Var retrievals.

Robustness of the physical selection to the ice optical properties.

Physical selection: **McFarquhar** parametrization

Sensitivity to the weather regime.

- Atmospheric profiles from the last **ECMWF database** are used to perform the physical selection.
- Each cloud type (semitransparent, opaque, liquid) is composed of four air-mass types: Mid-Latitude South, Mid Latitude North, polar and tropical.

Significant differences in bands 800-1000cm⁻¹ 1090-1200 cm⁻¹ but most of the channels are selected in band **1800-2150** cm⁻¹ for both selections.

Sensitivity to the weather regime: 1D-Var performance.

- No significant difference is observed in terms of 1D-Var retrievals
- The physical selection is quite independent of the air-mass type.

1. Martinet et al 2012: Evaluation of a revised IASI channel selection for cloudy retrievals with a focus on the Mediterranean basin, QJRMS, submitted.

Impact of the analysis of cloud variables on NWP forecast.

- The profiles analysed with 480 channels are used in a **1D-version** of the **AROME** model
- Evolution of the profiles during 3 hours to evaluate if the information brought by the observation is well conserved by the model.
- Three cases are tested: evolution of the **background**, the **analysis of T,q,LWC,IWC** and the **analysis of only T and q** keeping LWC and IWC to the background values.

LWC liquid cloud

IWC semi-transparent cloud

Conclusion and prospects

Past

- A set of 134 channels selected with a physical approach are proposed to improve the analysis of cloud variables
- Its robustness on the ice optical parametrization and the weather regime was demonstrated.
- Encouraging results have been found on a simplified version of AROME: the analyses of cloud variables are able to modify the forecast of cloud variables during the 3 hours of the assimilation window.

Future

- Modification of the cloud fraction during the assimilation (according to the lwc/iwc modifications).
- Global validation of the new channel selection in a quasi-operational context (if the lwc/iwc variables can be included in the 3D version of the model).

First studied case: Low Cloud (Observation minus background departures)

First studied case: Low Cloud

- Decrease of the liquid water content.
- A small amount of ice water content appears because of the cross-correlations between q and IWC.

Second studied case: Semi-Transparent Cloud

Second studied case: Semi-Transparent Cloud

- Increase of the ice water content.
- A small amount of liquid water content appears because of the cross-correlations between q and LWC.

