

Radiometric inter-comparison of IASI : IASI-A / IASI-B, IASI / AIRS, IASI / CrIS

Denis Jouglet (CNES-DCT/SI/MO) Jordi Chinaud (CNES-DCT/ME/EI) Xavier Lenot (C-S) and the IASI TEC team (CNES)

3rd IASI conference, 4-8 February 2013, Hyères, France

Introduction / objectives

- IASI / AIRS, IASI / CrIS: Methodology and results
- IASI-A / IASI-B: Methodology and results
- Conclusions

Introduction

Objectives of the radiometric inter-comparison

- For the IASI TEC: External monitoring of the IASI calibration
 - » Participation to the IASI-B in-flight commissioning
- For the users (GSICS):
 - » To ensure the consistency of the IASI calibration with the TIR sensors community
 - » Checks the long term data quality (climatology)

• Principles:

- Statistics (biases) on a very large dataset
- Work by couples :
 - » IASI-A / AIRS, IASI-B / AIRS, IASI-A / CrIS, IASI-B / CrIS, IASI-A / IASI-B
- Observations in normal operations (IASI L1C)
- Focus on same geophysical scenes observed by the two sensors (same place, same time, same viewing conditions)
 - → Check the calibration differences only
- No correction of spectra by simulation

Reminder of AIRS, IASI, CrIS characteristics

Instrument	IASI-A	IASI-B	AIRS	CRIS
Satellite	Metop-A	Metop-B	Aqua	NPP
Launch date	2006	2012	2002	2011
Local time	21h30		13h30	
Techno	FTS		Grating	FTS
Spatial resolution (nadir)	12 km		14 km	
Spectral range	645 – 2760 cm ⁻¹ / 3.62 – 15.5 μm			
Number of channels	8461		2378	1305
Spectral coverage	Continuous		Partial	
Spectral resolution	0.5 cm⁻¹		0.4 – 2.1 cm ⁻¹	0.625 – 2.5 cm ⁻¹

Typical IASI, AIRS and CRIS spectra

Methodology for IASI / AIRS, IASI / CrIS

Similar scenes: SNOs (Simultaneous Nadir Overpasses)

- Tolerance in simultaneity : 20 min
- ~30 scenes every 3 days for IASI / AIRS (12000 in 5 years)
- Always at high latitudes

Spatial match:

No collocation, differences in spatial sampling Regional averaging of the soundings pixels over a 300 km × 300 km area around the orbit crossing point

Spectral match:

Differences in spectral resolution and sampling

- Construction of 33 broad pseudo-bands, each PB ~100 elementary channels averaged
- The AIRS missing channels are considered when calculating the **IASI** coefficients

For each pseudo-band, $\Delta T = \frac{\left(L_{IASI} - L_{AIRS}\right)}{\frac{\partial L_{\sigma}}{\partial T}(\sigma, 280K)}$

Long term IASI-A / AIRS inter-comparison

IASI-A / AIRS & IASI-B / AIRS inter-comparison

Biases and standard deviations

Biases < ~0.1 K → Very well cross calibrated</p>

- Same patterns
- Similar datasets:

IASI-A / CrIS & IASI-B / CrIS inter-comparison

Biases and standard deviations

- Biases < ~0.2 K → Very well cross calibrated</p>
- Amount of data still to increase
- Similar datasets:

Methodology for direct IASI-A / IASI-B

IASI-A / IASI-B : selection of scenes

Selection aims at reducing the effects of :

- Off-nadir geometry = The lines of sight A & B are always different
 - » Focus on the central area \rightarrow same atmospheric thickness
 - » Need for homogeneous atmospheres (typical size ~16 km)

50 min time delay

- » Need for stable scenes
- » Need for homogeneous atmospheres (same atmosphere even if moving)

Selection tool computes a quality index

- Based on external data
- Homogeneous scenes:
 - » Low inter-pixel and intra-pixel variance of the IIS for A & B
 - » Clouds & snow: none or full in A & B

Stable scenes:

- » Focus on oceans at night
- » Low differences in IIS A & B temperatures
- » Clouds & snow: same amount between A & B
- » Low variations in ECMWF profiles ("geophysical NeDT")

MetopAIASI1

Direct IASI-A / IASI-B inter-comparison

Biases over a relevant dataset (homogeneous and stable scenes, night)

- Biases < $\sim 0.1 \text{ K} \rightarrow \text{Very well cross calibrated}$
- Standard deviations mainly due to geophysics
- Impact of the dataset selection:

IASI-A / IASI-B through AIRS and CrIS

Combination of IASI / AIRS and IASI / CrIS for IASI-A / IASI-B

- Biases < ~0.1 K → Very well cross calibrated
- Confirmation of the direct comparison
- Effect on B1?
- Small differences: dataset selection?

CONCLUSIONS

- The tool for inter-comparison is operational for the 5 couples of sensors: IASI-A / AIRS, IASI-B / AIRS, IASI-A / CrIS, IASI-B / CrIS, IASI-A / IASI-B
- Major result: very accurate cross-calibration!
 - Bias entre between 0 K and 0.2 K, < radiometric absolute specification of 0.5 K</p>
 - ◆ IASI-B very close to IASI-A (bias ~0.1 K) → continuity of the IASI mission

Work on-going:

- Increase the size and relevance of the dataset
- + Go further in the interpretation of small differences
- Perform IASI / AIRS and IASI / CrIS at high spectral resolution
- Perform a spectral inter-calibration?
- The tool should be operational for a long time (decades for climatic studies)
 Inclusion of the future sensors (IASI-C, IASI-NG, etc.)

