

IASI MetOp-B Radiometric noise and interpixel radiometry

Jordi Chinaud⁽¹⁾, V. Lonjou⁽¹⁾, E. Péquignot⁽¹⁾, D. Jouglet⁽¹⁾, E. Jacquette⁽¹⁾, S. Gaugain⁽¹⁾, J. Donnadille⁽²⁾, B. Tournier⁽²⁾, C. Baque⁽³⁾

⁽¹⁾ CNES, ⁽²⁾ NOVELTIS, ⁽³⁾ AKKA

3rd IASI conference, 4-8 February 2013, Hyères, France

- Instrument transmission and decontamination
- Interferometric contrast
- Stability of the detector temperature
- Band merging
- ✦ L0 noise
- L1B & L1C noise covariance matrix (NCM)
- Interpixel radiometry
- Conclusion

Instrument transmission and decontamination

- The evolution of the instrument transmission is monitored through the ratio of calibration coefficient slopes
- The decrease of the ratio of calibration coefficient slopes at 850 cm⁻¹ is proportional to the loss of instrument gain due to ice contamination (desorption).
- Desorption : water released by materials at 300 K (MLI, electronics)
 - \rightarrow condensation on field lens at 100 K (entrance of Cold Box Subsystem)
 - \rightarrow formation of ice
 - \rightarrow instrument transmission decreases
 - \rightarrow less signal \rightarrow NeDT increases
 - $\rightarrow \text{decontamination}$ needed to remove ice before the transmission loss reaches 20%
- First decontamination @300 K performed during SIOV (October 2012)
- According to the current trend, no decontamination needed before the beginning of 2014

3

Interferometric contrast

- Low drift of the contrast (in the way of improvement)
 Probably due to Wave Front Error evolution (in addition to Cube Corner alignment effect)
 - Strain release in the beam splitter due to hygroscopic effect (optical coatings, gluing)
 - » Deformation of cube corners
 - Drift should decrease with time (cf. IASI-A)

The interferometric contrast is defined as the interferogram fringe discrimination power:
 » Evaluated on mean BB and CS interferograms, for each SB, PN, CCD :

$$Contrast = \frac{\left(\max(|InterfBB|) - \min(|InterfBB|)\right) + \left(\max(|InterfCS|) - \min(|InterfCS|)\right)}{2(BaselineBB - BaselineCS)}$$

The higher it is the better wrt NedT

Stability of the detector temperature

Focal plane temperature (K)

Nominal behaviour

◆Stability of FPT → stability of instrument noise

Band merging

Linear combination of 2 bands (ex. : B1/B2) :

$$S_{merged_{B1B2}}(\nu) = w(\nu) \times S_{B1}(\nu) + (1 - w(\nu)) \times S_{B2}(\nu)$$

+Determination of spectral band limits (SBL) and merging weights using 3 criteria:

- » Maximum accepted noise level (0.5 K in B1, 1 K in B2, 3 K in B3)
- » In the band merging area : ratio of noise in the 2 bands between 1/3 and 3
- » Dimensioning constraints of the DPS

(maximum number of samples in the B1, B2, B3 bands and in the interbands B1/B2 & B2/B3)

L0 noise

Evaluation of noise using BB target

- Noise level within specifications Except in the B1/B2 interband and at the end of B3
- Optimization of spectral band limits in Cal/Val phase B to decrease noise in the interband regions (B1/B2 & B2/B3)

- » Scene temperature
- » Background temperature
- » Surface of pixel and pupil
- Detector noise depends on :
 - » Focal plane temperature
- Readout noise + ADC noise : constant

L0 NEDT

Noise covariance matrix (NCM)

 The NCM is a characteristic of errors distribution ε_i (amplitude and correlation between errors observed on different channels of the same spectrum) :

 $NCM = E(\varepsilon\varepsilon^t)$

With : $\varepsilon^{t} = [\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}, ..., \varepsilon_{N}]$ white noise of the 8461 IASI channels

E : expected value

Estimation of the NCM :

between channels due to apodisation

\rightarrow NCM_{L1C} is symmetric and band diagonal

Delivered to the L1 users in January 2013 Cres

 External calibration sequence using 2 alternating scan positions : SP 34 (0° = Nadir) / SP 15 (1.7° = quasi Nadir)
 Aim : compare measurements performed by the different pixels on Earth View targets

- Matching strategy:
 - » Along track (AL) : we match 2 pixels acquired on the same scan line on a given SP (SP15 or SP34)
 - » Across track (AC) : we match a pixel acquired on SP15 with a pixel acquired on SP34
- ◆ Collection of colocated soundings
 → evaluation of interpixel radiometric differences on :
 - » Broadband pseudo-channels
 - » Full spectra
- Results are filtered using :
 - » Data quality
 - » Spatial radiometric homogeneity
 - » Apparent scene temperature
 - » Cloud coverage

- Interpixel on broadband pseudo-channels
 - +19 orbits L0 (from 4/12/2012 20:57 to 6/12/2012 5:08)
 - Filtering conditions (homogenous and cloudless scenes)
 - » Homogenous scenes (standard deviation IIS = [0.0 K, 1.0 K]
 - » Cloud coverage = [0 %, 5 %]
 - » No filtering on the scene temperature

Definition of the pseudo-channels

	Effective v (cm-1)	Min v (cm-1)	Max v (cm-1)
Middle B1	903.3	778.2	1052.2
Middle B2	1515.5	1352.9	1767.0
Middle B3	2289.9	2134.2	2554.2

Interpixel statistics

	Bias (K)	Std (K)	Min (K)	Max(K)
P2-P1 AL	0.014	0.031	-0.322	0.506
P4-P3 AL	0.002	0.032	-0.348	0.642
P3-P1 AC	-0.011	0.139	-0.806	0.482
P4-P2 AC	-0.013	0.149	-0.774	0.539

Interpixel high resolution

- + 1 orbit L1C (from 4/12/2012 20:57 to 4/12/2012 22:37)
- Filtering conditions (homogenous and cloudless scenes)
 - » Homogenous scenes (standard deviation IIS = [0.0 K, 1.0 K]
 - » Cloud coverage = [0 %, 5 %]
 - » No filtering on the scene temperature

Across track results:

Interpixel high resolution

- + 1 orbit L1C (from 4/12/2012 20:57 to 4/12/2012 22:37)
- Filtering conditions (homogenous and cloudless scenes)
 - » Homogenous scenes (standard deviation IIS = [0.0 K, 1.0 K]
 - » Cloud coverage = [0 %, 5 %]
 - » No filtering on the scene temperature

Along track results

O PN1

PN2
 PN3
 PN4

omparison PN1/PN

AC colocation :

Specification

Interpixel high resolution

♦ 1 orbit L1C (from 4/12/2012 20:57 to 4/12/2012 22:37)

Filtering conditions (homogenous and cloudless scenes)

O PN1

PN2
 PN3
 PN4

Comparison PN1/PN3

AC colocation :

Interpixel high resolution

♦ 1 orbit L1C (from 4/12/2012 20:57 to 4/12/2012 22:37)

Filtering conditions (homogenous and cloudless scenes)

After 3 months of Cal/Val :

- The noise level is fully acceptable:
 - +Within specifications except in B1/B2 interband region and at the end of B3
 - Consistent with the noise measured on ground (during TV tests)
 - Same order of magnitude as IASI-A
- Instrument transmission, interferometric constrast, detector temperature,... are monitored → their behaviour is nominal.
- The Earth View interpixel radiometric bias is within specification (<0.1 K) except in the interbands