

IASI on MetOp-B Status after 3 months of L1 Cal/Val

<u>E. Péquignot¹</u>, L. Buffet¹, J. Chinaud¹, S. Gaugain¹, E. Jacquette¹, D. Jouglet¹, V. Lonjou¹, C. Larigauderie¹, C. Villaret¹, J. Donnadille², B. Tournier², C. Baque³

¹Centre National d'Etudes Spatiales (CNES) ²Noveltis (Toulouse) ³AKKA (Toulouse)

3rd IASI conference, 4-8 February 2013, Hyères, France

• Instrumental artifacts removal

• Sounder performances

Intercalibration

Conclusions

- MetOp-B launch: 17th Sept 2012
- IASI first interferograms (start of L1 Cal/Val): 23th Oct 2012
- IASI first L0 spectra (computed on-board): 24th Oct 2012
- IASI first L1 spectra (calibrated on ground): 25th Oct 2012
- Last configuration update before IASI-B L1C trial dissemination:
 - On-board: 10th Jan 2013
 - + Ground: 14th Jan 2013
- IASI-B L1C trial dissemination (Cal/Val partners) in Near Real Time: 22th Jan 2013
- IASI-B L1C trial dissemination (member states) in Near Real Time: 5th Feb 2013

First IASI-B spectrum (24th October 2012)

IASI: 2 operational modes

- Normal Operation Mode
 - Scanning the swath
 - 30 Earth views / 8 s

- External Calibration Mode
 - Fixed viewing direction: Earth, Hot Blackbody, 2 Cold Spaces, Back of the scan mirror)
 - + 27 views / 8 s
- On-board programming

5

Space & Ground segments: algorithms and configuration tuning

The IASI L1 Cal/Val Plan describes the process, methods and data

- To obtain the ultimate performances of L1 IASI products (calibration),
- To demonstrate these performances (validation) during flight operations

General goal of the Level 1 Cal/Val activities is to ensure that

- The IASI Level 1 products are compliant with their specifications
 - radiometric (absolute & noise), spectral and geometric performances
- All instrumental potential artifacts have been removed at user level product (L1C)

In-flight Cal/Val activities broken in 2 main successive phases

- The second phase has started after the L1C "trial dissemination"
- The level of accuracy of the validation and diversity of the conditions in which the validations are performed increase with time

Instrumental artifacts removal

• Sounder performances

Intercalibration

Interpixel radiometric calibration at L1C (Obs-Obs)

- Radiometric interpixel at L1C is better than 0.1 K -> at L1C all pixels are radiometrically independent -> on-board calibration & on-ground post-calibration work perfectly
- Still effects in the interbands. The limits will be optimized in phase B.
- See Jordi Chinaud's presentation for more details

Interpixel spectral calibration at L1C (Obs - Obs)

- IASI-B in ExtCal "EW"
- Soundings oversampling of 1.5 km, only nadir viewing

Residual calibration error - sm1211161527 - L1C - SUIVICALSP_PNREFX - CoefCal - 226 pts

- Selection of collocated and homogeneous scenes
- Spectral interpixel at L1C is better than 0.25/0.5 ppm -> at L1C all pixels are spectrally independent -> L1B(spectral shift correction) & L1C(SRF removal) processing work perfectly

See Elsa Jacquette's presentation for more details

COPS

Instrumental artifacts removal

• Sounder performances

Intercalibration

Radiometric noise

IASI-B in-flight measured L0 NedT@280 K on BB targets is

- close to Vacuum Test values (TAS 2006 and MetOp-B 2010)
- close to IASI-A in-flight

See Jordi Chinaud's presentation for more details

Radiometric noise: comparison with CrIS

Usually this picture is presented

NPP On-Orbit Performance is Excellent: NEdN

But the NedL also depends on spectral sampling & spectral resolution which are not the same for IASI and CrIS.

IASI	Bande 1		Bande 2		Bande 3	
Limites (cm ⁻¹)	645	1180	1180	1940	1940	2760
Echantillonnage (cm ⁻¹)	0.25		0.25		0.25	
X _{Max} (cm)	2		2		2	

CRIS	Bande 1		Bande 2		Bande 3	
Limites (cm ⁻¹)	648.75	1096.25	1207.50	1752.50	2150.00	2555.00
Echantillonnage (cm ⁻¹)	0.625		1.25		2.50	
X _{Max} (cm)	0.8		0.4		0.2	

EXELIS Cris

This document is not subject to the controls of the International Traffic in Arms Regulations (ITAR) or the Export Administration Regulations (EAR)

Radiometric noise: comparison with CrIS at user level

A much fair comparison is to perform it at the same spectral sampling and resolution

- To do so we have computed CrIS-like spectra from noisy BB L1C IASI spectra (920 random draws)
- The CrIS-like module works in the interferogram space using CrIS characteristics (OPD_{max} and apodisation functions)

Absolute spectral calibration at L1C (Obs - Calc)

- Results still very dependent on scene selection, radiative transfer (spectroscopy, linemixing, pressure shift), atmospheric profile used, algorithm (correlation, difference, peak finding), spectral line shape, instrument noise,...
- Consolidation of the results in phase B.

See Elsa Jacquette's presentation for more details

Geolocation

Sounder / IIS ~ 0.3 km
No orbital variations

 IIS / AVHRR ~ 0.1-0.2 km wrt the offset guess in the current ground configuration

No orbital variations

See Sebastien Gaugain's poster for more details

Radiance classification in L1C products (CCS)

- Sfax (Tunisia)
- AVHHR-4 image and the associated classification (6 radiometric classes)
- Black Blue Green (hottest scenes), Orange Red Yellow (coldest scenes)

L0&L1 data quality and availability

PTSI-6: uploaded on the 10th of January 2013 @11:25
Availability of L1C data: 99.4% (B3), 99.7% (B1&B2)

Instrumental artifacts removal

• Sounder performances

Intercalibration

Conclusions

IASI / AVHRR / IIS intercalibration

- 14 orbits of data (8-9th November): clear & homogeneous scenes
- We display results only for IASI AVHRR4

▶ IASI-AVHRR4 = -0.26K, IASI-AVHRR5 = 0.02K, IASI-IIS = 0.06K

Scene dependent bias only observed for IASI-AVHRR4
 -0.5 K between 220 K and 310 K

IASI-B / IASI-A radiometric inter calibration at L1C (Obs-Obs)

Biases over a relevant dataset (homogeneous and stable scenes, night)

Broad band pseudo-channels

Full resolution

Biases < ~0.1 K → Very well cross calibrated wrt spec (absolute 0.5 K for each)
 Standard deviations mainly due to geophysics

See Denis Jouglet's presentation for more details and inter comparisons (AIRS,CrIs)

IASI-B / IASI-A spectral inter calibration at L1C (Obs-Obs)

- IASI-B / IASI-A ExtCal "MA_MB" : reprocessing of 26th November data with BSO-8
- Selection of collocated and homogeneous scenes : ~ 50 scenes
- Inter pixel at L1C display a constant bias of 2.5 ppm. A part of this bias (1.5 ppm) may be attributed to IASI-B laser misalignment. It will be improved in L1 Cal/Val phase B.

See Elsa Jacquette's presentation for more details

Instrumental artifacts removal

• Sounder performances

Intercalibration

Conclusions

After 3 months of IASI-B L1 Cal/Val

- Instrument & interferogram acquisition are very stable and work perfectly
- Space & ground segments are now working well with consolidated parameters.
 The in-depth tuning has started.
- Performances are very encouraging and already of order of IASI-A
- Thanks to both CNES and EUMETSAT teams

The Earth seen by IASI-B (26th October at 9:30 local)

