Validation of the IASI ozone columns using data assimilation

Sébastien Massart¹
C. Clerbaux², D. Cariolle¹, A. Piacentini¹, S. Turquety², J. Hadji-Lazaro²

¹URA CNRS/CERFACS No. 1875, ²Université Pierre et Marie Curie-Paris 6, CNRS 8190, LATMOS/IPSL

> 2nd IASI international conference 25-29 January 2010 Sévrier, France

- How to validate a new data set?
 - Context
 - Validation using independent data sets
 - Validation using a numerical model
- Validation of the IASI total ozone columns from the LATMOS
 - Methodology
 - Results
- Assimilation of the IASI total ozone columns
 - Method and results
- Conclusions

How to validate a new data set?

Detailed comparisons with independent data sets:

- wide spread
- "easy"
- useful

 Example of IASI and OMI tracks - 1st August 2008 between 0h00 and 3h00 UTC

Validation using independent data sets

Detailed comparisons with independent data sets:

- wide spread
- "easy"
- useful

 Example of IASI and OMI tracks - 1st August 2008 between 0h00 and 3h00 UTC

Validation using independent data sets

Detailed comparisons with independent data sets:

- wide spread
- "easy"
- useful

... but :

- close but different times and locations
- regions without any intersection
- different data characteristics
- non-negligible errors

 Example of IASI and OMI tracks - 1st August 2008 between 0h00 and 3h00 UTC

Validation using a numerical model

IASI tracks

• Total O₃ column from a CTM

Comparison with a model

- interpolation within the model time/space resolution
- additional error due to model inaccuracy

Validation using a numerical model

IASI tracks

■ Total O₃ column from a CTM

comparison with a model

- + interpolation within the model time/space resolution
- + accurate model

- How to validate a new data set?
 - Context
 - Validation using independent data sets
 - Validation using a numerical model
- Validation of the IASI total ozone columns from the LATMOS
 - Methodology
 - Results
- Assimilation of the IASI total ozone columns
 - Method and results
- Conclusions

Methodology applied to the IASI ozone data

Accurate model

- MOCAGE CTM (Météo-France) with the VALENTINA assimilation suite
- linear ozone schem (Cariolle)
- assimilation of MLS ozone profiles and SCIAMACHY total ozone
- special effort to produce as accurate as possible analyses
- hourly analyses with a resolution of 2°x2°
- validation with ozonesondes and OMI data

Experiment:

- IASI total ozone columns from the LATMOS (*C. Clerbaux*)
- comparison with the model at the observation spatial resolution
- average and standard deviation computed at a 2°x2° spatial resolution
- statistics over a 5 months period (Aug-Dec 2007)
- differentiation according to the ground emissivity and the day/night data

Estimation of IASI ozone total columns bias

day data bias

Synthesis (Aug-Dec 2007):

- an overestimation of 6% in average (consistent with Boynard et al., 2009)
- similar trends for the daytime and the nighttime data (except over Australia), even if the bias is lower for daytime measurements.
- largest biases at low and mid-latitudes : presence of aerosols?
- large overestimation in the vicinity of the desert regions of the North Africa and the Persian Gulf: ground emissivity
- over icy region : weak IR signal
- over ocean : weak thermal contrast

Estimation of IASI ozone total columns standard deviation

night data std. dev.

Synthesis (Aug-Dec 2007):

- average random observation error: 7%
- similar trends for the daytime and the nighttime data but several differences (especially over dry and polar regions)
- largest error over dry regions
- in the South Polar region :
 - the error seems to match the distribution of the ice caps
 - the NN algorithm gives large weight to the climatological O_3 profiles (weak and noisy IR signal due to low ground temperatures and low O_3 concentrations)

day data std. dev.

Classification by ground emissivity

standard deviation

Experiment:

- surface emissivity derived from a climatology based on the MODIS sensor
- classification from 0.94 to 0.97 (0.05)
- for each class, we calculated the average of the biases and the std. dev.

Synthesis:

- the bias ↑ as the emissivity deviates from 0.9813 : mainly for the nighttime data
- results for low emissivities are not significant (the population is too low)

- How to validate a new data set?
 - Context
 - Validation using independent data sets
 - Validation using a numerical model
- Validation of the IASI total ozone columns from the LATMOS
 - Methodology
 - Results
- Assimilation of the IASI total ozone columns
 - Method and results
- Conclusions

Combined assimilation of IASI and MLS data

Experiment:

- assimilation of IASI columns (instead of SCIAMACHY) and MLS profils
- IASI bias reduction according to the previous validation
- covariance matrix of the IASI observation error: diagonal, variances from the previous validation
- no IASI averaging kernels

 Average difference (in %) between IASI and SCIAMACHY analyses

Results:

- the two analyses differ
 - in the troposphere
 - over polar regions

- stratosphere mainly constrained by MLS
- IASI bring (tropospheric) information over the polar regions during wintertime

Conclusions

- using a numerical model that includes the assimilation of independent data sets is a powerful methodology to validate new data sets
- IASI total ozone columns validation
 - results in a good agreement with other studies (b \approx +6%, σ \approx 7%)
 - source of errors : aerosols, low thermal constrast, low concentrations, ground emissivity, AK
 - largest errors are found over sandy or icy regions
- IASI total ozone columns assimilation
 - preliminary work to be continued (AK, profils, larger periods, ...)
 - lagest differences located in the polar troposphere due to the caracteristics of IASI compared to SCIAMACHY
- the model horizontal resolution is a limitation

Reference:

IASI special Issue of ACP, 2009

Validation of the analysis against OMI data

Latitude

-80

80

Validation of the analysis against ozonesondes data

bias

standard deviation

IASI/SCIAMACHY + MLS analyses against OMI

Ajouter la formule du Gain

IASI/SCIAMACHY + MLS analyses against ozonesondes

bias

standard deviation

