CO₂ and CH₄ in the tropics from spaceborne hyperspectral infrared observations:
2.5 years from MetOp IASI and AMSU

Cyril Crevoisier¹
(cyril.crevoisier@lmd.polytechnique.fr)

Delphine Nobileau¹, Alain Chédin¹, Raymond Armante¹,
Noëlle A. Scott¹, Laurent Crépeau¹, Thibaud Thonat¹,
Hidekazu Matsueda², Toshinobu Machida³,
Arlene M. Fiore⁴, and Peter Bergamaschi⁵

¹Laboratoire de Météorologie Dynamique/CNRS (Palaiseau, France)
²Meteorological Research Institute (Tsukuba, Japan)
³National Institute for Environmental Studies (Tsukuba, Japan)
⁴Geophysical Fluid Dynamics Laboratory/NOAA (Princeton NJ, USA)
⁵Joint Research Centre, Institute for Environment and Sustainability (Ispra, Italy)
Retrievals of CO$_2$ and CH$_4$ from Thermal-IR observations

A brief history of CO$_2$ retrievals from TIR...

• Study of the ability of Thermal-IR sounders to measure CO$_2$ and other GHG

• First retrievals of CO$_2$ from the 1st generation TOVS
 Chédin et al. 2003

• 2002: Launch of Aqua/AIRS

 Spectral resolution: 20 cm$^{-1}$ (20 channels)
 Precision of retrieval: ~3.0 ppmv
 (1 month-15°x15°)

• 2006: Launch of MetOp-A/IASI
 Crevoisier et al., ACP, 2009

 Spectral resolution: 0.5-2 cm$^{-1}$ (2378 ch.)
 Precision of retrieval: ~2.5 ppmv
 (1 month-15°x15°)

• 2012 & 2016: Launch of MetOp-B/IASI and MetOp-C/IASI

 Spectral resolution: 0.5 cm$^{-1}$ (8461 ch.)
 Precision of retrieval: ~2.0 ppmv
 (1 month-5°x5°)
Retrievals of CO$_2$ and CH$_4$ from Thermal-IR observations

A brief history…

7 years (Apr. 2003 - 2009) of monthly averaged mid-to-upper tropospheric CO$_2$ integrated content are available from AIRS (until July 2007) and then IASI.

Averaged seasonal cycle of CO$_2$ over [0-20N]

Trend: +2.1 ppmv.yr$^{-1}$

Instrumental problem

2003 - AIRS

2005 - AIRS

2007 - AIRS

2009 - IASI

Blank areas denote cloudy situations.
Retrievals of CO₂ and CH₄ from Thermal-IR observations

A brief history…

7 years (Apr. 2003 - 2009) of monthly averaged mid-to-upper tropospheric CO₂ integrated content are available from AIRS (until July 2007) and then IASI.

Averaged seasonal cycle of CO₂ over [0-20N]

- Instrumental problem
- Trend: +2.1 ppmv.yr⁻¹

Averaged seasonal cycle of CH₄ over [0-20N]

- Trend: +10 ppbv.yr⁻¹
How do we measure \(\text{CO}_2 \) and \(\text{CH}_4 \) from TIR observations?

\(\text{CO}_2 \) and \(\text{CH}_4 \) spectral impacts

Sensitivity of IASI \(T_B \) to variations of atmospheric and surface variables
(simulations with the 4A radiative transfert model)

Scott et Chédin, 1981
http://www.noveltis.fr/4AOP/

Jacquinet-Husson et al., 2008
http://ether.ipsl.jussieu.fr
How do we measure CO_2 and CH_4 from TIR observations?

CO_2 and CH_4 spectral impacts

Sensitivity of IASI T_B to variations of atmospheric and surface variables (simulations with the 4A radiative transfert model)

How do we measure CO_2 and CH_4 from TIR observations?

CO_2 and CH_4 spectral impacts

Sensitivity of IASI T_B to variations of atmospheric and surface variables (simulations with the 4A radiative transfert model)

CO_2 (1%) CH_4 (20%) T (1K) H_2O (20%) O_3 (10%) CO (40%) T_{surf} (1 K)

Variation of brightness temp. (K)

Wave number (cm$^{-1}$)

15 μm 7.7 μm 4.3 μm

Jacquinet-Husson et al., 2008
http://ether.ipsl.jussieu.fr

Scott et Chédin, 1981
http://www.noveltis.fr/4AOP/
How do we measure CO_2 and CH_4 from TIR observations?

CO_2 and CH_4 spectral impacts

For IASI: use of the 15 μm band only, even if channels at 4.3 μm peak lower.
How do we measure CO_2 and CH_4 from TIR observations?

CO_2 and CH_4 spectral impacts

- AIRS
 - 15 μm

- IASI
 - 4 μm

CO_2 (3%) H_2O (20%) O_3 (10%) T_{surf} (1 K)

- TIR observations
 - Satellite data
 - Surface temperature

- T_B pert, T_B ref (K)
 - Water vapor
 - Methane
 - Noise

Wavenumber (cm$^{-1}$): 650 - 750 for AIRS, 2220 - 2380 for IASI

Surface T

T_B:
- CO_2
- H_2O
- CH_4
- Noise
How do we measure CO_2 and CH_4 from TIR observations?

CO$_2$ and CH$_4$ spectral impacts

\[
\begin{align*}
\text{AIRS} & & \text{15} \ \mu\text{m} \\
\text{CO}_2 (3\%) & \quad \text{H}_2\text{O} (20\%) & \quad \text{O}_3 (10\%) & \quad \text{Tsurf} (1 \text{ K}) \\
\text{IASI} & & \text{CO}_2 \quad \text{O}_3 & \quad \text{H}_2\text{O} & \quad \text{surface } T
\end{align*}
\]

\[
\begin{align*}
\text{CO}_2 & : 1\% \rightarrow 0.1 \text{ K} \\
T & : 1 \text{ K} \rightarrow 1 \text{ K} \\
\text{Radiometric noise} & \sim 0.2 \text{ K}
\end{align*}
\]

\Rightarrow Very low signal/noise ratio!
Retrievals of CO_2 and CH_4 from Thermal-IR observations

What can be retrieved from TIR observations from space?

• Need to decorrelate T/CO_2 (or T/CH_4)

\implies Use of independent info on T: we use simultaneous microwave observations from AMSU flying onboard both Aqua and MetOp-A.

\sim The quality of the retrieval is linked to the quality of both IASI and AMSU.

\sim The coincidence IASI/AMSU is a strong (and even crucial) asset of MetOp!

• We use a non-linear inference scheme based on neural networks.

• The decorrelation between T/GHG is easier to do in the tropics.
 \implies a better precision is expected there.

• Need to average the retrievals: here, 1 month, 5°x5°.

• Retrievals in clear sky only (no clouds, no aerosols).
 \implies design of specific IASI threshold tests to detect clouds and aerosols.
Retrievals of CO$_2$ and CH$_4$ from Thermal-IR observations

What can be retrieved from TIR observations from space?

• We retrieve a mid-to-upper tropospheric content:
 ~“one degree of freedom”.
 ~boundary layer not measured.

• NB: the weighting function points higher for IASI than for AIRS because of the choice of channels, and because of the use of 4.3 μm AIRS channels.

• **Application**: 30 months of IASI/AMSU data

• IASI data are routinely archived at LMD via the Ether Centre for Atmospheric Chemistry Products and Services (http://ether.ipsl.jussieu.fr/), through EUMETCast, the Broadcast System for Environmental Data of EUMETSAT.
Retrievals of CO$_2$ and CH$_4$ from Thermal-IR observations

Results (1) - Seasonal cycle of CO$_2$

Detrended CO$_2$ seasonal cycle in the northern tropics

MLO 4 km

[GLOBALVIEW-2008]
Retrievals of CO$_2$ and CH$_4$ from Thermal-IR observations

Results (1) - Seasonal cycle of CO$_2$

- Decrease in amplitude with altitude
- Surf. ↔ 1 month ↔ mid-tropo
• Decrease in amplitude with altitude

• Surf. ⇔ 1 month ⇔ mid-tropo
Retrievals of CO₂ and CH₄ from Thermal-IR observations

Results (1) - Seasonal cycle of CO₂

- Decrease in amplitude with altitude
- Surf. ↔ 1 month ↔ mid-tropo ↔ 1 month ↔ upper tropo

[IASI] 9-15 km (max at 13 km)
[JAL/CONTRAIL] aircraft ~10 km [Matsueda et al. 2008; Machida et al. 2008]
[AIRS] 5-15 km (max at 10 km)
[MLO] 4 km [GLOBALVIEW-2008]
Retrievals of CO$_2$ and CH$_4$ from Thermal-IR observations

Results (1) - Seasonal cycle of CO$_2$

- Decrease in amplitude with altitude

- Surf. \Leftrightarrow 1 month \Leftrightarrow mid-tropo \Leftrightarrow 1 month \Leftrightarrow upper tropo \Leftrightarrow 1 month \Leftrightarrow UTLS

\Rightarrow time-lag of CO$_2$ while transported from the surface to the upper troposphere

16 km entering point of stratospheric air
[adapted from Strahan et al. 1998]

IASI 9-15 km (max at **13 km**)

JAL/CONTRAIL aircraft \sim10 km
[Matsueda et al. 2008; Machida et al. 2008]

AIRS 5-15 km (max at **10 km**)

MLO 4 km
[GLOBALVIEW-2008]
Retrievals of CO$_2$ and CH$_4$ from Thermal-IR observations

Results (2) - CH$_4$ retrievals vs. models

Monthly average of mid-to-upper tropo. CH$_4$ in the tropics

- **IASI**: precision ~16 ppbv for 1 month, 5°x5°
- **TM5**: with surface sources constrained by NOAA surface stations (4Dvar), sampled at the spatio-temporal resolution of IASI with CO$_2$ weighting function applied.

20N-20S gradient
Retrievals of CO$_2$ and CH$_4$ from Thermal-IR observations

Results (3) - Correlations between IASI CO$_2$ and IASI CH$_4$

The simultaneous retrieval of CO$_2$ and CH$_4$ from IASI gives us the opportunity to study the correlation between both gases.

\[
\begin{align*}
\text{JFM 2008} & \quad +7 \text{ ppbv/ppmv} \\
\text{AMJ 2008} & \\
\text{JAS 2008} & \quad -2.8 \text{ ppbv/ppmv} \\
\text{OND 2008} &
\end{align*}
\]
Retrievals of CO$_2$ and CH$_4$ from Thermal-IR observations

Results (3) - Correlations between IASI CO$_2$ and IASI CH$_4$

The simultaneous retrieval of CO$_2$ and CH$_4$ from IASI gives us the opportunity to study the correlation between both gases.

JFM 2008

+7 ppbv/ppmv

JAS 2008

-2.8 ppbv/ppmv

CH$_4$ vs. CO$_2$ measured at 11 km during two CARIBIC flights [Schuck et al., 2009]

August 2007
February 2008

open symbols: obs in the FT
Retrievals of CO₂ and CH₄ from Thermal-IR observations

Conclusions

• **Retrieval characteristics:**
 ~Mid-to-upper tropospheric integrated content
 ~Clear-sky only
 ~Best precision in the tropics
 ~Based on IASI/AMSU coincident observation.

• **Information on:**
 ~Atmospheric transport
 ~Strong emissions uplifted to the upper troposphere
 e.g. CO₂ emitted by fires (analysis of GHG diurnal cycle following Chédin et al. [2003, 2008] → thesis of Thibaud Thonat)

• **Perspectives: A multi-instrument (multi-species) approach**
 ~Coupling to observations in the near-IR (e.g. by Tanso/GoSat)
 ~Coupling to observations in the Thermal-IR with limb sounding techniques (e.g. ACE-FTS) which give access to profiles of CO₂ from 7 to 20 km (Foucher et al. 2009).

• **We need data to validate and analyze results** (regular measurements of CO₂/CH₄ in the mid- and upper-troposphere)