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Presentation Outline

Å Introduction to PCRTM

Å Cloud radiative transfer modeling

Å Example of applying cloudy PCRTM to forward modeling

Å Examples of applying cloudy PCRTM to retrievals

Å Conclusions
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ÅPCRTM calculates channel radiances by linearly combine a set of pre-
stored EOF:

ÅEOFs      are obtained by performing a Principal Component Analysis 
(PCA) of channel radiances under a wide range of atmospheric and 
observation conditions

ÅCoefficient Ci are predicted from a few monochromatic radiances which 
depends on (T, Ts, H2O and trace gases....)

ÅCi can be treated as supper channels which contain all the essential 
information on a spectrum

ÅPCRTM provides Jacobians for both C and R
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Overview of PCRTM
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ÅThere are a lot of redundant information in the channel radiances for 
high spectral resolution spectra

ÅPCA is an efficient way to compress the information content

ï EOF are orthonormal to each other
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ÅOnly small number (Neof) U are needed to capture information content

ÅAny radiance spectrum can be generated using the following formula:
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ÅCi is the projection coefficient (EOF amplitude) for the ith

EOF (dot product of R and U):

Theoretical Basis of PCRTM

ÅIt contains essential information about the spectrum and can be 
treated as super channels in a physical retrieval algorithm

ÅIt can be obtained by linearly combined a few monochromatic 
radiances:
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PCRTM accuracy for IASI

ÅPCRTM can be train as accurate as one 

wishes relative to line-by-line model

ÅMuch smaller error relative instrument 

noise

ÅCompare well with satellite observed 

spectra
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Examples of Eigenvectors in PCRTM

ÅEigenvectors capture correlated spectral information of 

hyperspectral data

ï Remove redundant information

ï Average out random instrument noises

ÅPC scores capture information content of the 

observations

ïAtmospheric profiles, cloud, and surface properties are 

a function of the PC scores

ÅDoing radiative transfer and inversion in EOF domain

ïReduces dimension and time for data processing



Effective cloud property calculation
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ÅCloud reflectivity (a)  and transmissivity (t) look-up tables are calculated using 

DISORT

ÅBoth reflectivity and transmissivity are functions of frequency, particle size, optical 

depth and emergent zenith angle. 

ÅReflectivity and transmissivity are azimuthally averaged. 
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Clear sky condition- -RT done recursively:

Rl+1,v=Rl ,vtl ,v+(1-t l ,v)B(Tl ,v)

Under cloudy condition:

Rl+1,v=Rl ,vtl ,v+(1-tcloud,v-rcloud,v)B(Tcloud,v)+rcloud,vRdown



Cloud layering and modeling
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DISORT PCRTM
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Teff is a function of cloud optical depth and cloud thickness
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Forward Model Flowchart

Atmospheric (T, H2O, O3, 

N2O, CO, CH4), surface 

(,e, r,Ts), cloud (tau,Pcld, 

De, phase), and observation
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Cloud properties
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Comparison between PCRTM and DISORT for ice clouds
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Å DISORT and PCRTM treat layer Planck function differently

ï Result in differences even when cloud optical depth is zero

Å The cloud height are purposely chosen high for two layer ice cloud case

ï Large temperature gradient

ï Test our effective cloud temperature scheme

Å Better effective cloud temperature scheme is under development



Comparison between PCRTM and DISORT for mixed 

ice and water clouds

Å Up to 4 layers of clouds are tested

ï Code can handle as many as 100 layers of clouds

ï Errors are small considering errors in cloud properties

ï Much faster speed relative to full multiple scattering calculations
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Examples of Observed and fitted IASI cloudy 

radiances


