

Forward Modeling for IASI: Spectroscopic Issues and LBL_CRA

Tony Clough

Clough Radiation Associates, LLC

IASI, Sevrier, FR 26 Jan 2010

Collaborators and IASI Cases

Collaborators:

- M. Shephard, V. Payne, K. Cady-Pereira and J. Delamere AER, Inc.
- W. Smith and S. Kireev
 Hampton U.
- Extension of

Performance of the line-by-line radiative transfer model (LBLRTM) for temperature and species retrievals: IASI case studies from JAIVEx: M. W. Shephard, S. A. Clough, V. H. Payne, W. L. Smith, S. Kireev, and K. E. Cady-Pereira, Atmos. Chem. Phys., 9, 7397-7417, 2009

IASI Cases from JAIVEx

- 2007 04 19

Case Study

- » Over SGP site (surface emissivity retrieved)
- » Atmosphere
 - Clear and Homogeneous (h2o)
 - 'Well Characterized'
- **2007_04_20**

'Control'

- » Over Gulf of Mexico "
- » Atmosphere
 - Broken Clouds and Highly Inhomogeneous (h2o)
 - Not So Well Characterized

Topics / Issues

e.g. Matricardi ACP, 2009

Temperature

- Carbon Dioxide

- » Line Parameters: CDDB (2008), Tashkun et al. JQSRT, 2009
- » Line Coupling: Niro et al., JQSRT, 2005 J.M.Hartmann
- ✓ Agreement between CO₂ v₂ and CO₂ v₃
- ✓ Q-Branch 667 cm-1
- ✓ Band Head 2385 cm-1

- Nitrous Oxide

- ? Agreement between $CO_2 v_2$ and $N_2O v_3$
- » N₂O profile scaling required: 19 April case: 1.04

20 April case: 1.02

Methane

✓ Line Coupling: Tran et al., JQSRT, 2006 J.M.Hartmann

Water Vapor

- A slide of its own
- Significant improvements but ...

Introduction

IASI

Joint Airborne IASI Validation Experiment

•	Scan Rate	8 secs

Scan Type
 Step and dwell

Pixel IFOV 0.8225°
IFOV size at Nadir 12 km

• Sampling at Nadir 18 km

Earth View Pixels / Scan
 2 rows of 60 pixels each

Swath ± 48.98°
 Swath ± 1066 km

Spectral Range 645 to 2760 cm-1

Resolution (hw/hh)
Lifetime
Power
210 W

• Size 1.2 m x 1.1 m x 1.3 m

Mass 236 kg
 Data rate 1.5 Mbps
 Radiometric Calibration < 0.1 K

- The IASI programme is led by
- Centre National d'Études Spatiales (CNES) in association with EUMETSAT.
- Alcatel Alenia Space is the instrument Prime Contractor.

JAIVEx 19 Apr 2007

CART-site (03:35 UTC)

IASI/LBLRTM Validation

Strategy: to analyze the spectroscopy in the context of these red residuals

IASI 19 Apr 2007 CO₂ Q-Branch

Sensitivity to Upper Stratosphere

Line Coupling in Methane

Tran et al., JQSRT, 2006

Water Vapor: 'The Most Important Greenhouse Gas'

Critical for NWP and Climate

- Line Parameters
 - Laurent Coudert
 - » Strong Lines: Intensities increased by $\sim 5 \%$
- Line Widths and Shifts / Temperature Dependence
 - Bob Gamache &
 - this paper
- Line Coupling
 - Linda Brown (accidental two line resonances)
 - Revised relaxation rates
 - First Order
- Continuum
 - Inextricably linked to the width
 - mt_ckd_2.4
 - Scaled in selected regions of the water band by ~5%

Water Vapor v_2 Region : Impact of Coudert Intensities

Water Vapor P-Branch: 1310 -1410 cm-1

Water Vapor P-Branch: 1400 -1500 cm-1

Water Vapor Band Center: 1530 -1630 cm-1

Water Vapor R-Branch: 1640 -1750 cm-1

Overall Comparison of LBL_CRA with IASI 19 Apr 2007 SGP case

Temperature

Carbon Dioxide

- » Line Parameters: CDDB (2008), Tashkun et al. JQSRT, 2009
- » Line Coupling: Niro et al., JQSRT, 2005 J.M.Hartmann
- ✓ Agreement between CO₂ v₂ and CO₂ v₃
- ✓ Q-Branch 667 cm-1 line couping resolve: * 1.2
- ✓ Band Head 2385 cm-1 robust for both cases

Nitrous Oxide

- ? Agreement between $CO_2 v_2$ and $N_2O v_3$
- » N₂O profile scaling required: 19 April case: 1.04

20 April case: 1.02

Methane

- ✓ Line Coupling: Tran et al., JQSRT, 2006 J.M.Hartmann
- **✓** * 1.5

- Water Vapor
 - Coudert strengths
 - Is it possible that there are errors in R lines?
 - Widths are the current major issue
 - Widths and continuum are inextricably linked
 - Line shape may be an issue as refinements proceed
 - P-Branch has much lower residuals in LBL_CRA than R-Branch
 - Sondes provide an excellent first guess / structure
 - 19 April 2007 case is superb for FM improvement
 - Due to the resolution of IASI there is a limit to the extent spectroscopic improvements can be made

- Next Steps
 - Resolve R-Branch Issues
 - More Cases
 - Night time IASI preferred (we have some AIRS cases)
 - High Water

Model Availability:

- unfortunate situation
- Mark Shephard > Environment Canada
- contact me for the package- return 20 February
- clough.associates@gmail.com

```
if (vj.ge.1300. and. vj.lt.1590.) fact = 0.9
c
          if (v_i,gt.1590. and v_i,lt.1900.) fact = 1.1
c
          fh2o(i) = fact*fh2o(i)
c
         fscal sav = fscal
         i_fac = (v_j-v_1_h2o)/dv_h2o + 1.0001
          if (i_fac.eq.29) fscal = 0.95*fscal! 1530
c
          if (i fac.eq.30) fscal = 0.95 * fscal ! 1540
c
          if (i fac.eq.31) fscal = 0.95 * fscal ! 1550
c
          if (i fac.eq.32) fscal = 0.95 * fscal ! 1560
c
         if (i fac.eq.33) fscal = 0.90 * fscal ! 1570
         if (i_fac.eq.34) fscal = 0.90 *fscal! 1580
         if (i fac.eq.35) fscal = 0.98 * fscal ! 1590
         if (i fac.eq.36) fscal = 1.07 * fscal ! 1600
         if (i fac.eq.37) fscal = 1.10 * fscal ! 1610
         if (i_fac.eq.38) fscal = 1.08 *fscal! 1620
         if (i_fac.eq.39) fscal = 1.092*fscal! 1630
c
         if (i fac.eq.39) fscal = 1.06 * fscal ! 1630
          if (i fac.eq.40) fscal = 1.084*fscal! 1640
c
         if (i fac.eq.40) fscal = 1.04 *fscal! 1640
          if (i fac.eq.41) fscal = 1.076*fscal! 1650
c
         if (i_fac.eq.41) fscal = 1.02 *fscal! 1650
          if (i fac.eq.42) fscal = 1.068*fscal! 1660
c
         if (i fac.eq.42) fscal = 0.98 * fscal ! 1660
          if (i fac.eq.43) fscal = 1.060*fscal! 1670
c
         if (i_fac.eq.43) fscal = 0.98*fscal! 1670
          if (i_fac.eq.44) fscal = 1.052*fscal! 1680
c
         if (i fac.eq.44) fscal = 0.98*fscal! 1680
          if (i fac.eq.45) fscal = 1.044*fscal! 1690
c
         if (i fac.eq.45) fscal = 0.98*fscal! 1690
          if (i fac.eq.46) fscal = 1.036*fscal! 1700
c
         if (i_fac.eq.46) fscal = 0.98*fscal! 1700
          if (i fac eq 47) fscal = 1.028*fscal + 1710
         if (i fac.eq.47) fscal = 0.99*fscal! 1710
                                                                     19
          if (i fac.eq.48) fscal = 1.020*fscal! 1720
c
```

What is 'Truth'?

- Spectral Residuals are Key!
- Consistency within a band system
 - v₂ band to investigate consistency for H₂O
- Consistency between bands
 - IASI v_2 and v_3 bands to investigate consistency for CO₂
- Consistency between species
 - TES: temperature from O₃ and H₂O consistent with CO₂; N₂O
- Consistency between instruments
 - IASI

- TES

- NAST-I

- AIRS

- MIPAS

- AERI

- ACE

- SHIS

Temperature Retrievals

Carbon Dioxide

- Niro et al. Line Coupling- implications for co2 continuum
 - Accuracy of collision rates
 - Limitations of impact approximation
 - Significant impact on our understanding of absorption far from band center
- Duration of collision effects- chi factor
- Line intensities- MIPAS line strengths
 - Tashkun, Teffo, Flaud et al.
- H₂O broadening of CO₂

CO₂ Line Coupling: Effect on Spectra

Line Parameters:

- Niro, F., K. Jucks, J.-M. Hartmann, Spectra calculations in central and wing regions of CO2 IR bands. IV
 : Software and database for the computation of atmospheric spectra:
 J Quant Spectrosc Radiat Transfer., 95, 469-481.
- P, Q, & R line coupling for bands of importance
- Niro et al. code modified to generate first order line coupling coefficients, y_i .
- Works in regular line by line mode with LBLRTM

Temperatures: 4

Line Shape:

- Impact Approximation
- Duration of collision effects under study

Continuum:

- X Factor
- Sampled 2 cm⁻¹
- New definition required
- Temperature dependence ??

№ Законен събом то	ngy. Nike relaksu senga yak dini di sehesa yan suor Yangi sa Yangi sa Kasansaya, Nikelessi Yang	daw, yar kone 8 mwasa e 100m. 30 e 1 maje në Copjani 1850, ma 8 mil pad dhe systemic	Toolgy seed do is obsolute.			

Chi Factor

CO2 Q-Branch: 667 cm-1

Water Vapor Retrievals

Water Vapor

- Variability: Horizontal / Vertical / Time
- Residuals are consistently greater than IASI noise
- Coudert et al. Line Strengths
- Line Widths
- Continuum
 - Provides the extra absorption previously provided by the 'super Lorentzian' chi factor
 - Based on dipole allowed transitions with widths ~ 50 cm-1
 - Same line shape is used for every line from the Microwave to UV
- Implications from downwelling spectra at the ARM NSA site.

H₂O: Detail of Band Center

AERI Downwelling Radiances ARM NSA Site

AERI Downwelling Radiances: 408 cm-1 ARM NSA Site

						Transition		Strength	E"	Gamache	% Change	"Clough
						Frequency		200000000000000000000000000000000000000	20700	Width		Width"
10	4	6	9	3	7	400.221819	0.259221	1.053E-20	1216.2313	0.0791	-25.0	0.0593
10	6	4	9	5	5	400.481040		1.051E-20	1474.9810	0.0510	-25.0	0.0383

Carbon Dioxide:

- Line Coupling is critical!
- Relaxation Matrix needs adjustment and/or
- Duration of Collision Effects need to be included
- v_2 and v_3 approaching consistency v_2 and v_3 approaching consistency
- v₂ Q-Branch not yet understood

Water Vapor:

- Line Intensity Issue
 Coudert Line Parameters have been adopted
 Internal consistency is not necessarily conclusive
- Residuals are too large (much larger than IASI noise)
- Line Coupling, Widths, Shifts, Speed Dependent Voigt?
- Retrievals for other species are generally very good
- Updated Code and Line Parameters are available
 - Separate Line Coupling file (Hartmann) available: aer_v2.1
- Spectral Residuals are a CRITICAL validation criterion

IASI

C'est Incroyable!

- Carbon Dioxide:
 - Line Coupling is critical!
 - Relaxation Matrix needs adjustment and/or
 - Duration of Collision Effects need to be included
 - CO₂ Continuum requires modification
 - v_2 and v_3 approaching consistency Tashkun v_3 line parameters to be evaluated
 - ν₂ Q-Branch not yet understood

- Water Vapor:
 - Line Intensity Issue
 Coudert Line Parameters have been adopted
 Internal consistency is not necessarily conclusive
 - Residuals are too large (much larger than IASI noise)
 - Line Coupling, Widths and Shifts?
- xx Simultaneous retrieval of Temperature and Water Vapor xx
- Retrievals for other species are generally excellent
- Updated Code and Line Parameters are available
 - Separate Line Coupling file (Hartmann) available: aer_v2.1
- Spectral Residuals are a CRITICAL validation criterion

More Spectroscopy Than You Ever Hoped to Hear About

Tony Clough

Advanced High Spectral Resolution Infrared Observations EUMETSAT

16 September 2008

LBLRTM Considerations

LBLRTM Issues

- Changing water in a layer > changes layer boundary altitudes > changes level temperatures
 - Simultaneous temperature and water vapor retrievals are effected
 - Fix boundary altitudes on input (hydrostatic equation not satisfied)
- AJ: self broadening of water vapor lines is not treated
- Upwelling Radiance Calculations: Currently NO capability to include downwelling radiance at upper boundary
 - Not a problem for TOA
 - Problem for HIS, e.g. ozone
 - Problem for AJ

Water Vapor v_2 Region

AERI Downwelling Radiances ARM NSA Site

Transition							Strength	Gamache	% Change	"Clough	Self
Frequency								Width		Width"	Width
396.432560	8	2	6	7	1	7	2.396E-20	0.0807	-7.5	0.0746	0.384
397.318923	9	3	6	8	2	7	5.811E-20	0.0804	-7.5	0.0743	0.328
397.675624	10	6	5	9	5	4	3.104E-20	0.0565	-7.5	0.0522	0.301
398.941390	9	7	3	8	6	2	1.825E-20	0.0415	-20.5	0.0330	0.328
398.976486	9	7	2	8	6	3	5.476E-20	0.0414	-20.5	0.0329	0.328
400.221819	10	4	6	9	3	7	1.053E-20	0.0791	-25.0	0.0593	0.301
400.481040	10	6	4	9	5	5	1.051E-20	0.0510	-25.0	0.0383	0.301

SRF file: srftables_031115v3.hdf

AIRS - sarta (v4,tuned)

AIRS - sarta (v4,untuned)

AIRS - IbIrtm v11.3

AIRS/model comparisons

- Mean residuals for 36 "clear-sky" cases
 - ARM TWP Phase 1 AIRS validation
 - Layer profiles, AIRS and SARTA radiances supplied by L. Strow and S. Hannon

Example case

Mean residuals for all "clear-sky" cases

Temperature

Impact of CO₂ Line Coupling in the Infrared

Temperature: CO₂ Spectral Regions

SRF file: srftables_051118v4.hdf

Water Vapor

TES - SHIS Radiance Comparison

- TES Convolved to SHIS ILS
- {TES LBLRTM(TES Geometry)} = {SHIS LBLRTM(SHIS Geometry)}

Aura Validation Experiment (AVE) 11/07/04 2298_0003_10

AIRS / SHIS Brightness Temperature Comparison Excluding channels strongly affected by atmosphere above ER2

SHIS Analysis from AURA Validation Experiment Gulf of Mexico - no sonde

M. W. Shephard and S. A. Clough, (AER) 12 Jun 06 18:57

AIRS Analysis ARM Tropical Western Pacific site - sonde

Summary 1

- Forward Model for Temperature Retrievals significantly improved
 - P-R line coupling is a key element
- Carbon Dioxide:
 - χ factor and continuum strongly influenced by line coupling
 - need to introduce small χ factor for duration of collision effects
 - CO₂ Continuum has been reduced by 25% for best fit at bandhead
- v_2 and v_3 are apparently not yet fully consistent
- Line Coupling for N₂O
- Updated Code and Line Parameters to be made public
 - separate Line Coupling file (Hartmann) available: TAPE2
- Spectral Residuals will likely become the validation criterion

MT_CKD Water Vapor Continuum Model

- Definition: Continuum is that absorption with slow spectral dependence which,
 when added to the line by line absorption, provides agreement with measurement.
- Scaling: Dependence on pressure, temperature and mixing ratio must be correct
- The model is based on contributions from two sources:
 - 1. Allowed line contribution
 - Line wing formalism constrained by the known physics with relevant
 parameters (~2) determined from laboratory and atmospheric Measurements
 - Same line shape is used for every line from the Microwave to 20,000 cm-1
 - 2. Collision-Induced contribution
 - Provides the extra absorption previously provided by the 'super Lorentzian' chi factor
 - Based on dipole allowed transitions with widths ~ 50 cm-1
 - Same line shape is used for every line from the Microwave to UV
- The model includes both self and foreign continuum
- Spectral region: 0 20,000 cm⁻¹

AIRS Analysis ARM Tropical Western Pacific site - sonde

Summary 2

- Issues with water vapor continuum have become remarkably muted
- Collision induced component addresses measurement issues
 - No direct validation of mechanism is apparent
- Self and Foreign each use a single separate line shape for all lines to construct the respective continua over full frequency domain
- Self Continuum (line wing component) dominant between bands
- Foreign Continuum (collision induced) dominant within bands
- Well Validated in 0-10 cm-1 (microwave); 400-500 cm-1; 800 -1300 cm-1; and 2500-2700 cm-1 (SST)
- Validations needed 10-400 cm-1 and Shortwave
- Temperature Dependence! Laboratory Measurements (Lafferty)
- MT_CKD Water Vapor Continuum is publicly available
 - http://rtweb.aer.com