INFRARED CONTINENTAL SURFACE EMISSIVITY SPECTRA AND SKIN TEMPERATURE RETRIEVED FROM IASI OBSERVATIONS

V. Capelle¹, E. Péquignot², A. Chédin¹, N. A. Scott¹

1. LMD, CNRS/IPSL, Ecole Polytechnique, Palaiseau, France

2. CNES - Centre Spatial de Toulouse, Toulouse, France
Spectral variation of emissivity in TIR

Snow and Ice

Vegetation

Bare soil: quartz

Quartz Reststrahlen bands

Bare soil: calcite

Bare soil: gypsum

Spectral variation impact on TIR emissivity: up to 50%, particularly over bare soils in quartz Reststrahlen bands

from MODIS/UCSB and ASTER/JPL emissivity libraries
Infrared RTE (lambertian surface, clear sky, night)

\[I(\lambda, \theta) = \varepsilon_s(\lambda) \tau_s(\lambda, \theta) B(\lambda, T_s) \]

\[+ \int_{\tau_s(\lambda, \theta)}^{1} B[\lambda, T] d\tau(\lambda, \theta) \]

\[+ (1 - \varepsilon_s(\lambda)) \tau_s(\lambda, \theta) \int_{\tau_s(\lambda, \theta)}^{1} B[\lambda, T'] d\tau'(\lambda, \theta) \]

\[\tau'(\lambda, \theta) \tau(\lambda, \theta) = \tau_s(\lambda, \theta) \]
Multi Spectral Method (MSM)

For **window channels** $\varepsilon_s(\lambda)$ can be computed by:

$$I(\lambda, \theta) - \int B[\lambda, T] \partial \tau(\lambda, \theta) - \tau_s(\lambda, \theta) \int B[\lambda, T] \partial \tau'(\lambda, \theta)$$

$$\varepsilon_s(\lambda) = \frac{\tau_s(\lambda, \theta)}{\tau_s(\lambda, \theta)} \left\{ B(\lambda, T_s) - \frac{1}{\tau_s(\lambda, \theta)} \int B[\lambda, T] \partial \tau'(\lambda, \theta) \right\}$$

with $\tau_s(\lambda, \theta) \neq 0$

In order to calculate ε_s one needs:

1) identifying clear sky radiances

2) knowing the thermodynamic state of the atmosphere (T, H2O, O3 profile)

 ➢ Proximity recognition of radiance in the TIGR(*) climatological dataset

3) estimating the surface skin temperature

 ➢ For channels presenting the double property of being atmospheric window and having an almost constant emissivity whatever the surface is, T_s remains the only unknown of the radiative transfer equation

(*) Chédin et al., 85; Chevallier et al., 98, Scott et al. 99
Surface skin temperature:
semi-transparent spectral band [11 - 12 µm]

Emissivity variability ($\mu \pm \sigma$) of the 8461 IASI channels calculated from soil and vegetation emissivity spectra of MODIS/UCSB and ASTER/JPL libraries

3 channels selected for their good transmittance ($\tau \sim 0.6$) and a small variability of the emissivity ($\sigma \sim 0.01$):

- $\lambda_1 = 11.429$ µm
- $\lambda_2 = 11.601$ µm
- $\lambda_3 = 12.001$ µm

$\varepsilon \sim 0.97$ is no more an unknown for these channels

$$T_s = B^{-1} \left\{ I_{sat}(\lambda_0, \theta) - \frac{1}{\tau_s(\lambda_0, \theta)} \int B[\lambda_0, T(\tau_0, \theta)] d\tau - (1 - \varepsilon_s(\lambda_0)) \varepsilon_s(\lambda_0) \frac{1}{\tau_s(\lambda_0, \theta)} \int B[\lambda_0, T(\tau', \lambda_0, \theta)] d\tau' \right\}$$

Right hand side calculated with retrieved atmospheric profiles using a Fast Radiative Transfer Model based on 4A “line-by-line” code (4A: [Scott and Chédin, 1981])
Infrared Emissivity Spectrum from 3.7 to 14 µm

\[
\varepsilon_s(\lambda) = \frac{I(\lambda, \theta) - \int B[\lambda, T] \partial \tau(\lambda, \theta) - \tau_s(\lambda, \theta) \int B[\lambda, T] \partial \tau'(\lambda, \theta)}{\tau_s(\lambda, \theta)} \tau_s(\lambda, \theta) \left\{ B(\lambda, T_s) - \int B[\lambda, T] \partial \tau'(\lambda, \theta) \right\}
\]

→ \varepsilon calculated for 101 IASI channels selected for their high sensitivity to surface parameters and low sensitivity to other contributions. These channels are distributed along the spectrum and are particularly located where the emissivity variability is highly dependant on the type of soil or vegetation in order to allow an accurate reconstruction of the entire spectrum.

→→→ Discontinuous spectrum with an expected accuracy on the retrieved emissivity of ~3% at 4 µm and less than 1% at 12 µm.

MSM Emissivity database:
- 165 spectra for various soil and vegetation types extracted from MODIS/UCSB and ASTER/JPL emissivity libraries.
- sampling: [3.70 - 14.0] µm at 0.05 µm resolution.

Least square minimization + shape adjustment

Emissivity continuous spectrum between 3.7 and 14.0 µm at 0.05 µm resolution
Estimation of T_S : comparison with MODIS and ECMWF

For nighttime, June 2008

- 2 versions of MODIS data: v005 and v041
- T_s globally in agreement for the different products
- The largest discrepancies are located mainly on Sahara:
 - $\Delta T_s \approx 2.5K$ (iasi – modis041)
 - $\Delta T_s \approx 5.5K$ (iasi – modis005)
 - $\Delta T_s \approx 0K$ (iasi – ECMWFfcs)
- v041 more consistent with IASI results which lies between ERA-40 and MODIS
Estimation of T_S : comparison with MODIS and ECMWF

For nighttime, Dec. 2008

- In general, the two versions of MODIS colder than IASI MSM or ECMWF-fcs.
 - See Australia or South America
 - On Sahara, ECMWF-fcs is the warmest, MODIS005 the coldest. IASI-MSM and MODIS041 similar.
Estimation of TS: comparison with MODIS

Values consistent with reported errors on Ts found in the literature.
Bias: keep in mind the 1 hour time shift between IASI and TERRA (21h30 vs. 22h30).

ΔTs=0.74 ± 2.2 K

ΔTs=-0.69 ± 2.1 K
Emissivity strongly depends on the type of surface and its value increases with the vegetation.

- The Quartz Reststrahlen bands are well observed and dominate the spectra
- Good agreement between IASI MSM and MODIS emissivity
For tropical region the emissivity spectra is flat with a value close to 1.

In semi-desert region, the quartz reststrahlen bands is also important.
Map of emissivity at 4.05 microns for IASI and MODIS041 for June 2008
Map of emissivity at 8.55 microns for IASI and MODIS041 for June 2008
Seasonal variations of the emissivity

- Desert (Northern hemisphere)
- Savanna
- Tropical forest
- Semi-Desert (Southern hemisphere)

Seasonal variations are almost negligible in most regions except Savannas where the vegetation is more influenced by seasonal precipitations.
Summer variations of the emissivity: Case of Savannas

The seasonal variations are quite surprising:
- Emissivity in the reststrahlen band is higher in December (supposed to be the dry season) than in June (wet season).
- Disagree with previous results on AIRS (for the period 2003-2006).
- In agreement with MODIS BF results (even if the MODIS amplitude is smaller than the IASI one.

But the 2 periods differ: El Nino/La Nina episodes → work in progress

AIRS time-series for emissivity at 3.96, 8.55,11.03 and 12.02 microns

Multivariate ENSO index

NOAA/ESRL/Physical Science Division – University of Colorado a Boulder/CIRES/CDC

(E. Péquignot, 2006, thesis)
Conclusions

1) Relatively good agreement between IASI MSM and MODIS continental emissivity and surface temperature for the regions considered (IASI-MSM Ts in between MODIS and ECMWF fcst). Some discrepancies can be partly explained by the diurnal cycle.

2) We will soon start to build a climatology of monthly continental surface emissivity as well as temperature retrieved from IASI. This climatology will be freely available through our website (as is currently available the climatology of emissivity retrieved from AIRS).

3) Preliminary results on seasonal variations ask the question of the validity of a climatology by month, averaged over years since it appears that the emissivity could be sensitive to non-cyclic phenomena such as El Nino/La Nina.

4) Such high resolution emissivity spectra and surface skin temperature should help improving models of the earth surface-atmosphere interaction and the retrieval of meteorological profiles from infrared vertical sounders.