

Remote sensing of mineral dust with IASI

Lars Klüser^{1,2} and Thomas Holzer-Popp¹

¹ German Aerospace Center (DLR), Wessling, Germany

² University of Augsburg, Institute of Physics, Augsburg, Germany

Motivation

The aim:

A simple (and fast) dust AOD retrieval scheme without line-by-line radiative transfer calculations and without a priori information of atmospheric state

- mineral dust large partical fraction leads to significant extinction in TIR
- surface emissivity spectra approximately linear in [10.5µm,12.0µm]
- strong dust extinction peak at 9-10 $\mu m \rightarrow$ significant extinction at 10.5 μm
- surface emissivity and dust extinction spectra: rather smooth atmospheric gas apsorption spectra: mainly narrow lines
- IASI spectral resolution sufficient to avoid major gas absorption lines
- different dust models can be distinguished by IASI observations
- BT spectra sensitive to dust layer height in [10.5µm,12.0µm]
- retrieval over land and ocean

Definition of dust models

• 5 dust models:

MITR	(transported)	
SAHA	(observed Saharan)	size
MIAM	(accumulation mode)	
MIXT	(mixture)	part
MICM	(coarse mode)	

- MITR, MIAM, MICM: OPAC dust models
- SAHA:

observed Saharan dust no absorption fraction (Thomas et al., JGR, 2009)

• MIXT:

equally weighted average of 4 above

Simulated BTD spectra

$$\mathsf{BTD}_{\lambda} = \left(\mathsf{T}_{\lambda} - \mathsf{T}_{12.0}\right)$$

 BTD_{λ} can be expressed as 2^{nd} order polynomial *f* of AOD

BTD is sensitive to surface emissivity especially at low $AOD_{10.5}$

 $f(AOD) = \alpha + \beta \cdot AOD + \gamma \cdot AOD^2$

Simulated BTD spectra

BTD spectral shape depends on:

(DM)

 (Θ_{v})

(ε_{10.5})

 (T_{sfc})

- dust model
- viewing geometry
- surface emissivity
- surface temperature
- dust layer temperature

Retrieval method

- 1. internal cloud screening by BTD-, IIS tests and expected spectral shape
- 2. IASI BT spectra separated in 0.1µm bins centered at λ in [10.5µm,11.6µm]

 $BT_{\lambda} = max(\{T_{\lambda \pm 0.05 \mu m}[IASI]\})$

- 3. calculate set of 11 AOD_{10.5} values for each [$\epsilon_{10.5}$, T_{dust}, DM] (with T_{sfc} ≥ BT_{12.0}): AOD_{10.5,λ} = $f^{-1}(\alpha_{\epsilon_{sfc}, T_{dust}, DM}, \beta_{\epsilon_{sfc}, T_{dust}, DM}, \gamma_{\epsilon_{sfc}, T_{dust}, DM}, BTD_{\lambda})$
- 4. calculate weighted mean $AOD_{10.5}$ and variability index:

$$\overline{\text{AOD}}_{10.5}(\epsilon_{10.5}, \mathsf{T}_{\text{dust}}, \mathsf{DM}) = \sum_{\lambda} \left(\frac{|\mathsf{BTD}_{\lambda}|}{\sum_{\lambda} |\mathsf{BTD}_{\lambda}|} \cdot \mathsf{AOD}_{10.5, \lambda} \right)$$
$$\delta \mathsf{AOD}_{10.5}(\epsilon_{10.5}, \mathsf{T}_{\text{dust}}, \mathsf{DM}) = \frac{\sigma(\{\mathsf{AOD}_{10.5, \lambda}\})}{\langle \{\mathsf{AOD}_{10.5, \lambda}\} \rangle} \stackrel{!}{<} 1.5$$

5. smallest δAOD selects best fitting conditions (AOD, ϵ_{sfc} ,T_{dust},DM)

First example results: Feb 01-11, 2009

First example results: Feb 01-11, 2009

low AOD: high T_{dust} retrieved (insufficient information) retrieval quality flag gives information on reliability

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Planned method improvements and evaluation

- include a statistically derived dust model from fit between IASI BTD spectra and AERONET AOD (depending on DM, Ångström exponent)
- use a priori emissivity map / spectra for weighting in the retrieval statistics
 - \rightarrow extension to λ <10.5µm possible
- OPAC has only monomodal dust models, determine conversion factors to AOD_{0.5} statistically (depending on dust model and temperature)
- evaluate against AERONET and other satellite data
- \rightarrow so far only testcase, calculation of larger dataset required

Summary

- a fast method for dust AOD retrieval from IASI has been presented, which accounts for different dust types, surface emissivity and dust layer temperature
- AOD is calculated from 11 different wavelength observed BTD
- statistical information of the AOD set is used to determine the most likely dust model, surface emissivity and dust layer temperature
- a first test case shows high dust loads over the Arabian Peninsula and parts of the Sahara
- a larger dataset will be generated for evaluation and improvements

