

Processing of IASI cloudy Heterogeneous scenes using the AVHRR radiances analysis in an operational context

François Faijan

Contents talks

- Most measurements from hight-spectralresolution infrared sounders (IASI) are contaminated by clouds.
- The main objective of this work is to propose an approach to face up to cloudy processing with IASI.
- We studied two processes :
 - Simulations of cloudy radiances
 - Cloud clearing

Objectives & Methods explications

Methods

- Two methods for processing cloudy heterogeneous scenes are considered in the IASI fov:
 - The first method: "cloudy radiances", it 's a difference between calc. and obs.

• <u>The second method</u>: It's a decomposition of cloudy IASI spectrum from four spectra corresponding to homogeneous layers in the IASI Field Of Regards. It's then possible to retrieve the corresponding atmospheric profile.

Cloud clearing (1)

- This method functions only if there is clear sky in one or more of four pixels of the IASI Field Of Regard.
- The objectif is to extract each homogeneous spectrum.

Rhomo: homogeneous radiance

Robs: Observed radiance
I: IASI channel number
k: Pixel number (1 to 4)

J: Homogeneous spectrum number (1 to 4)

 $R_{obs}^{k}(i) = \sum \alpha^{k}(j) R_{homo}(i,j)$

 α : layer fraction

Cloud clearing (2)

- Quality of each homogeneous spectrum depends on a theoretical amplification coefficient
- This coefficient depends on layers fractions on each of four FOV (layers representativeness on each FOV)
- This coefficient will be considered in this work

 This method is extract from CNES software and design by NOVELTIS

DFS

- Degree of Freedom Signal
- It provides an information on the number of independent IASI measurements, among 114 channels used
- This value depends on :
 - Covariance of measurement noise
 - Covariance of prior estimate error of x(T,Q)
 - Weighting function matrix
- DFS is used for compare these two methods

Precisions of the experience

- At the maximum, 114 channels are used for the 1dVar
- 65 levels
- All situations are on the sea surface (North Atlantic)
- The length of experience is 24 hours
- Weight functions are taken at the bottom of the atmosphere

Results

DFS histograms

DFS histogram of cloudy radiances:

DFS average: 1.80

A large standard deviation!

DFS Histogram of clouds clearing:

DFS average: 2.48

A large standard deviation!

Geographical location

Cloud clearing method

- The amplication coefficient is considered in the covariance measurement noise matrix.
- Filtering of values who are higher than 1.3

FS histograms for same pixels

DFS histogram of cloudy radiances:

DFS average: 3.09

DFS Histogram of clouds clearing:

DFS average: 3.72

and DFS

For the same number of selected channels, the DFS is higher with cloud clearing method

Conclusions and future work

- We get better results with cloud clearing method, but these results are limited, we can't applied it everywhere.
- Improve cloudy radiances method by considering a larger list of clouds characteristics to improve the DFS:
 - Cloud phase
 - Cloud optical depth
 - Effective particle size
- Next step 1Dvar with ConcordIASI campaign

Thank you for listening!