Assimilation of cloudy radiances in global numerical weather prediction model.

Nadia Fourrié, V. Guidard, T. Pangaud and F. Rabier

CNRM/GMAP
Météo-France and CNRS
Toulouse

Overview

- 1. Introduction: in operations
 - 1.a Operational configuration for AIRS and IASI in the global model
 - 1.b Assimilation of AIRS cloudy radiances
- 2. A step further: IASI cloud-affected radiances assimilation
 - 2.a First trials of cloudy radiance assimilation
 - 2.b Cloud parameters retrievals
 - 2.c Simulation of cloudy radiances
- 3.Conclusions and future work

1.a Current operational configuration

ASI operationally assimilated in :

- "long wave" temperature channels are assimilated and water vapour,
- clear condition (1 flag/channel, McNally & Watts, 2003):

	operations	Pre-operational
Open sea	64	77 channels
Land	50	59 channels
Sea ice	32	41 channels

AIRS operationally assimilated in :

- "long wave" temperature channels are assimilated,
- Clear and cloudy conditions
- Over open sea

	Number of assimilated channels	
Clear	54 channels	
Cloudy	54 channels	

1.b Assimilation of AIRS cloudy radiances

Method used for the assimilation of AIRS cloudy radiances affected by mid- to low-level clouds

Cloud parameters determined with CO2slicing (120 channels)

Minimisation of $F_{k,p}$

$$F_{k,p} = \frac{(R_{clr}^{k} - R_{obs}^{k})}{(R_{clr}^{K_{ref}} - R_{obs}^{K_{ref}})} - \frac{(R_{clr}^{k} - R_{cld}^{k,p})}{(R_{clr}^{K_{ref}} - R_{cld}^{k_{ref},p})}$$

Robs: observed radiance

Rclr: clear radiance simulated from the model

Rcld: radiance with opaque cloud at pressure level p

k= channel of the C02 band **Ref**= reference channel (surface)

= 917.31 cm - 1 (AIRS)

Cloud top pressure:

$$p_c = \frac{\sum p_{c,k} w_k^2}{\sum w_k^2}$$

 $p_c = \frac{\sum p_{c,k} W_k^2}{\sum_{w}^2} \qquad P_{c,k}$: pressure level minimizing $F_{k,p}$ wrt pressure W_k : derivative of W_k : pressure

Effective cloud emissivity

$$N_{arepsilon} = rac{(R_{clr}^{k_{ref}} - R_{obs}^{k_{ref}})}{R_{clr}^{k_{ref}} - R_{cld}^{k_{ref}}}$$

Second IASI Conference, 25-29 January 2010, Annecy

1.b Method for the assimilation of cloudy radiances

1.b Cloud-affected radiances: Impact

More observations are assimilated, particularly for tropospheric channels (potentially more contaminated by clouds).

Small positive impact on forecast scores.

1.b Case study: predictability of the Medicane storm (Pangaud et al, 2009, MWR)

•Medicane: Storm that affected the southeastern part of Italy on the 26th of september 2006.

Toujours un temps d'avance

2.IASI cloudy radiances

- Impact of the cloud parameter on the simulation of the IASI observations
- CO2slicing with 34 channels

 Bias and standard deviation of the innovation (obs –simulation) reduced with the cloud parameters.

2.a IASI cloudy radiances:Preliminary results (Pangaud, 2009)

Case study: KLAUS storm

- 22 to 25 January 2009
 Most damaging storm in France since
 10 years
- OPER: all data (including IASI clear radiances and AIRS cloudy radiances)
- EXP = OPER + IASI cloudy radiances
- Verifying data: ECMWF analysis
 Validity time: 24 january 2009 at

06UTC

Forecast range: 102h (runs from 20

January at 00UTC)

Satellite view from NOAA 18 of Klaus at 3h30UTC the 24th of january 2009

Toujours un temps d'avance

2.a IASI cloudy radiances: Preliminary results

KLAUS: Cloud top pressure for 24 January 2009, 00 UTC

21H41UTC

Z.a IASI cloudy radiances: Preliminary results

(Pangaud, 2009)

Settings:

- RTTOV 8
- Assimilation only over open sea
- Obs error(cloudy) = 1K (obs error(clear) = 0.5K)
- 56 channels used (64 channels used
 Over open sea 8 lower channels)

3 week experiment.
Impact on global forecasts:
Mixed impact and not statistically significant

Second IASI Conference, 25-29 January 2010, Annecy

2.IASI cloudy radiances : Preliminary results (Pangaud, 2009)

(Pangaud, 2009)
KLAUS simulation at 102h forecast range for 24/01/2009 06UTC

2.b IASI cloudy radiances : evaluation of the cloud parameters

- Validation in current pre-operational configuration: RTTOV version
 9, enhanced horizontal and vertical resolution of the global atmospheric model.
- Impact study on the reference channel.

1027: 901.5cm-1 867:861.5cm-1 1271:963.5cm-1

Cloud top pressure Effective cloud emissivity

2.b IASI cloudy radiances: evaluation of the cloud parameters

Preliminary validation against MSG cloud top pressure

Cloud top pressure from SEVIRI given every 25 hPa

For one day (2009/11/01).

Surface channel	correlation
867 (861.5 cm-1)	0.82
1027 (901.5cm-1)	0.83
1271 (962.5cm-1)	0.81

2.c IASI cloudy radiances: impact on the radiance simulation

Statistics for 1/11/2009

Weighting functions of 3 reference channels

Second IASI Conference, 25-29 January 2010, Annecy

Conclusion and future work

- Cloud parameters retrieved with CO2slicing
- Small positive impact of the AIRS cloud-affected radiance assimilation on the forecast skill.
- Same methodology applied for IASI as the one used for AIRS (Pangaud et al, 2009, MWR).
- First results encouraging: simulation of a winter storm with the assimilation of IASI cloud-affected radiances.
- Further validation of the cloud parameter retrieval
 - improve the cloud parameter retrieval by the CO2-Slicing (others set of used channels,choice of the reference surface channel?...)
 - Validation against other sources of cloud parameters (MSG...)
 - Cloud comparison exercice of Lydie Lavanant
 - Investigate the bias correction
- Assimilation of IASI cloud-affected radiances

