Development of a GPU-based High-Performance Radiative Transfer Model for the High-spectral Resolution Infrared Sounders

Poster #3

Bormin Huang, Jarno Mielikainen*, Hyunjong Oh** and Allen Huang CIMSS/SSEC, University of Wisconsin-Madison *Visiting scholar from Kuopio University, Finland **Visiting scholar from KMA, Korea

> 2nd IASI International Conference 25-29January 2010 Sevrier (Haute-Savoie), France

Graphic Processing Unit (GPU)

Driven by the insatiable market demand for real-time, highdefinition 3D graphics, the programmable GPU has evolved into a highly parallel, multithreaded, multicore processor.

nVidia and ATI (now AMD) are two major manufacturers.

100 teraflop data center:
> 1429 4-CPU servers:
Cost \$3.1M & consume 571 KW
Or
> 25 4-GPU servers:
Cost \$310K & consume 27KW

CUDA GPU Computing Paralle Data Cache ALL Shared Data P. P., DRAM P. P4 P₅ ALU P.'=P.+P.+P.

Parallel execution through cache

Our GPU forward model is running on a low-cost personal super computer (~US\$7000).

It has a quad-core 2.4 GHz AMD CPU, and 4 Nvidia Tesla 1.3 GHz GPUs with total 960 cores.

ServMax PSC-2 960-Core Personal Supercomputer

- 250 times faster than Standard
 PCs and Workstations
- 4 Teraflops of Compute Capability
- Delivering Cluster Level Computing Performance at Your Desk.

Form Factor	10.5" × 4.376", Dual Slot
# of Tesla GPUs	1
# of Streaming Processor Cores	240
Frequency of processor cores	1.3 GHz
Single Precision floating point performance (peak)	933
Double Precision floating point performance (peak)	78
Floating Point Precision	IEEE 754 single & double
Total Dedicated Memory	4 GB GDDR3
Memory Speed	800MHz
Memory Interface	512-bit
Memory Bandwidth	102 GB/sec
Max Power Consumption	187.8 W
System Interface	PCIe ×16
Auxiliary Power Connectors	6-pin & 8-pin
Thermal Solution	Active fan sink
Software Development Tools	<u>C-based CUDA Toolkit</u>

Our current benchmark on the \$7,000 GPU:

- For the AIRS sounder with 2378 channels: our GPU-based forward model in CUDA obtains 731X speedup over its original Fortran code running on 1-core CPU (0.260 sec).
- For the IASI sounder with 8461 channels: our GPU-based forward model in CUDA obtains 1523X speedup over its original Fortran code running on 1-core CPU (1.003 sec).
- Using the 4-core CPU with OpenMP, the Fortran code speedup is only 2.21x over its 1-core CPU for the AIRS forward model, and only 2.56x for the IASI forward model.

Paper Submitted to Journal of Computational Physics

Development of a GPU-based High-Performance Radiative Transfer Model for the Infrared Atmospheric Sounding Interferometer (IASI)

Future Work

- 1. Developing the GPU-based high-performance RTTOV forward model for NWP SAF/Met Office.
- 2. Developing the GPU-based high-performance WRF model for SeaSpace
- 3. Developing the GPU-based high-performance CRTM model for JCSDA.
- 4. Developing the GPU-based full spectrum physical retrieval system.

Development of a GPU-based High-Performance Radiative Transfer Model for the High-spectral Resolution Infrared Sounders

