

Demonstration of the radiometric accuracy of IASI for climate monitoring using coincident data from the Advanced Along-Track Scanning Radiometer.

John Remedios¹, Sam Illingworth¹, Robert Parker¹,

¹EOS, Department of Physics and Astronomy, University of Leicester, UK; ijr8@le.ac.uk

The importance of radiometric intercomparisons

Radiometrically for IASI, radiometric characterisation

- Monitors radiometric stability for IASI (long-term testing of instrument)
- Provides information on radiance accuracy for product derivation
- Allows IASI to provide radiance standard for intercomparisons of instruments: spectral dimension (GSICs)
- Allows IASI to provide the tie for other sensors with gaps in otherwise long-time series e.g. AATSR/SLSTR radiometers.

Scientifically, a long-term series of climate spectrally resolved radiances

- can be used directly to study the long term radiance change over decades
- can be used to directly test radiation schemes in GCMs [accurate radiances are a geophysical product in themselves]

What is the AATSR instrument?

- Dual view thermal and Vis/IR imaging radiometer on ENVISAT
- Thermal emission channels similar to AVHRR, MODIS: **11, 12 and 3.7 μm** (nighttime)
- **Dual view** (nadir and 55° to nadir)
 - Along-track scanning, two views of same scene at different angles, for better atmospheric correction
- Intrinsic on board calibration
 - 2 accurate on-board black bodies for IR calibration
 - VISCAL unit for visible channel calibration
- 1 km IFOV nominal at nadir
- 500 km swath
- Long time series from 1991 (ATSR, ATSR-2, AATSR and SLSTR on Sentinel-3

Low noise detectors cooled to 80 K by active Stirling Cycle Coolers.

1.5 km x 2 km resolution

Image courtesy of Rutherford Appleton Laboratory

BB Temperature Sensor Stability

Average temperature errors from two blackbody crossover tests < 20 mK

Pre-launch cal to within 30 mK (Smith et al, 2001)

IASI vs. AATSR: orbits

IASI vs. AATSR spectral response

Compute IASI equivalent BTs for the AATSR filter functions

IASI vs. AATSR: 1/9/2007

Filters ACP paper

Illingworth, Remedios and Parker, ACP, 2009

- 1. Data only over ocean
- 2. Time difference between IASI and AASTR is less than 20 minutes
- 3. Only accept data for which there is a difference between the 2 viewing angles of LT 1°
- 4. Only select date for which there are no outliers of AATSR BT within each IASI pixel, i.e. if any of the AATSR BTs within each IASI pixel lie more than 3 σ away from the mode, then this pixel is rejected. This filter is a first check of homogeneity of the AATSR BTs within each IASI pixel.
- 5. Once the comparison has been done for the clear data, the standard deviation of the AATSR pixels within each of the clear IASI pixels is used as a filter to ensure homogeneity within each of the cloudy IASI pixels.

1st September 2007

41 clear pixels

AATSR-IASI

11 μ m difference =-0.05 K

12 μ m difference = 0.23 K

1st September 2007

41 clear and 25 fully cloudy pixels;

IASI-AATSR:

11 μ m difference =-0.05 K

12 μ m difference = 0.19 K

IASI vs. AATSR: new analysis; 3 days

Filters: new analysis (preliminary)

- 1. Data only over oceans
- 2. Only accept data where the time difference between the two instruments is less than 30 minutes. This is a change from the original work, and results in more global data, but also more statistical anomalies, as loud may have had the chance to form during this time.
- 3. Only accept data for which the IASI and AATSR viewing angle is LT 10°, and for where there is a difference between the 2 viewing angles of LT 1° (Consistent with Wang et al. (2009))
- 4. Only select date for which there are no outliers of AATSR BT within each IASI pixel, i.e. if any of the AATSR BTs within each IASI pixel lie more than 3 σ away from the mode, then this pixel is rejected. This filter is a first check of homogeneity of the AATSR BTs within each IASI pixel.
- 5. Once the comparison has been done for the clear data, the standard deviation of the AATSR pixels within each of the clear IASI pixels is used as a filter to ensure homogeneity within each of the cloudy IASI pixels.
- 6. "All": clear and cloudy where IASI-AATSR < 1K (arbitrary)

IASI vs. AATSR: 1/9/2007 new; preliminary

1st September 2007

11 μm Clear

11 µm Clear & Cloudy

IASI-AATSR 11 μ m: clear =-0.08 K; all=-0.05K (<1K diff)

clear =- 0.08 K; all =- 0.04 K (no 1 K filter)

IASI vs. AATSR; 1/9/2007 new (preliminary)

1st September 2007

IASI-AATSR 12μm: clear =+0.16 K; all=+0.21K (<1K diff) clear=+0.16 K; all=+0.28 K (no 1 K filter)

2010 IASI Conference

New analysis (preliminary)

Clear sky

Date	"Best" 11 μm (clear)	"Best" 12 μm (clear)
13/08/2007	-0.06	+0.16
01/09/2007	-0.08 (-0.05)	+0.16 (0.23)
05/03/2008	-0.10	+0.14

Cloudy sky

Date	"Best" 11 μm (all)	"Best" 12 μm (all)
13/08/2007	-0.06	+0.27
01/09/2007	-0.05 (-0.05)	+0.21 (0.19)
05/03/2008	-0.14	+0.15

Ref: Illingworth, Remedios and Parker, ACP, 2009

N.B. Cloudy data alone can show higher differences up to 0.4 K

Preliminary results:

- Radiometric intercomparison consistently better than 0.3 K
- Intercomparison at 11 μm < approx. 0.1 K
- Intercomparison at 12 μm < approx. 0.3 K
- More variability at 12 μm
- Cloudy data needs further investigation.

Outlook:

- Improved understanding of results and "global" methodology
- IASI (spectra) and AATSR (radiometric) good foundation for GSICS intercomparison project
- Important to maintain consistency of IASI calibration and intercomparison of successive IASI instruments – and also for FTS on MTG Sounder platform
- Clearly important to have very well known spectral response functions for radiometers.
- Suggests provenance for NASA CLARREO mission.

Thank you for Listening

IASI vs. AATSR

5th March 2008

IASI vs. AATSR

5th March 2008

