IASI Conference 2010

Status of IASI instruments:
FM2 after 3 years in orbit
PFM-R and FM3 on ground

L. Buffet (CNES), C. Larigauderie (CNES), E. Pequignot (CNES), V. Lonjou (CNES), J. Chinaud (CNES), P. Astruc (TAS), G. Bonnetto (TAS), D. Montero (Eumetsat), S. Anstötz (Eumetsat)
Status of IASI instruments:
FM2 after 3 years in orbit
PFM-R and FM3 on ground

■ IASI FM2
 • More than 3 years in orbit
 • Very good instrument health
 • Very good instrument availability

■ IASI PFM-R and FM3
 • 2 next IASI flight models on Metop-B and Metop-C
 • Will be launched in 2012 and 2016
IASI FM2: instrument availability

- **Time spent in Normal Operation mode**
 - 97.1% over year 2008/2009
 - 94.1% over year 2007/2008

- **Time spent in External Calibration mode**
 - 1% over year 2008/2009
 - 1.1% over year 2007/2008
 - Routine External Calibrations: 2 orbits/month.
 - Moon pass in 1st Cold Space view: 2 or 3 occurrences/year
IASI FM2: instrument availability

Year 2008/2009 Main events

- 3 IASI anomalies
- External calibrations
 - Routine
 - 3 Moon passes (CS1)
- 1 TOP update
 - Reduced spectra
- 1 METOP OOP manoeuvre

Routine External Calibration

0 = Off (0.000%)
1 = Standby or Standby/Refuse (0.46%)
2 = Heater 1 (1.15%)
3 = Heater 2 or Heater/Refuse (0.22%)
4 = Auxiliary (0.05%)
5 = External Calibration (1.01%)
6 = Normal Operation (97.16%)
Since beginning of life, instrument outages are due to

- Anomalies
 - IASI anomalies: all related to radiative environment (SEU/MEU – Single/Multiple Event Upset, SET – Single Event Transient)
 Mainly 2 equipments are impacted: DPS (Data Processing Subsystem) and CCE (Cube Corner Electronics). SRAM memory parts used in these equipments are sensitive to SEU.
 - Metop anomalies (4 occurrences in 2007-2008)
- External events (Moon pass, satellite manœuvre)
- Monthly routine external calibrations
- Ice decontamination
 - Done in March 2008. The next one is expected before end 2010.
 → needed to restore instrument radiometric performance @850cm-1
IASI anomalies since end of SIOV

<table>
<thead>
<tr>
<th>date</th>
<th>anomaly</th>
</tr>
</thead>
<tbody>
<tr>
<td>15/05/2007</td>
<td>13:18:09 SEU laser</td>
</tr>
<tr>
<td>13/06/2007</td>
<td>10:23:03 SEU DMC</td>
</tr>
<tr>
<td>20/07/2007</td>
<td>14:30:47 SEU DPC 3A</td>
</tr>
<tr>
<td>01/11/2007</td>
<td>13:35:46 SEU DPC 4A</td>
</tr>
<tr>
<td>08/11/2007</td>
<td>11:02:57 SEU DMC</td>
</tr>
<tr>
<td>18/11/2007</td>
<td>01:31:32 SET DPS DMC Converter</td>
</tr>
<tr>
<td>04/02/2008</td>
<td>12:46:11 SEU CCM ALU</td>
</tr>
<tr>
<td>09/02/2008</td>
<td>10:37:06 SEU DPC 3B</td>
</tr>
<tr>
<td>21/07/2008</td>
<td>23:43:54 SEU DPC 1A</td>
</tr>
<tr>
<td>09/12/2008</td>
<td>20:28:10 SET DPS Main Converter</td>
</tr>
<tr>
<td>29/12/2008</td>
<td>22:50:19 EQSOL double EDAC</td>
</tr>
<tr>
<td>26/08/2009</td>
<td>11:08:59 SEU DMC</td>
</tr>
<tr>
<td>07/09/2009</td>
<td>18:17:20 SEU CCM ALU</td>
</tr>
<tr>
<td>30/10/2009</td>
<td>04:49:50 SEU CCM ALU</td>
</tr>
</tbody>
</table>

IASI FM2: instrument availability

IASI anomalies since end of SIOV.
IASI FM2: instrument availability

- Improvement of the availability over 3 years
 - Anomalies
 - Joint work with Eumetsat to improve anomaly recovery procedures: systematic procedures in case of SEU
 - Outage time was significantly reduced
 For a typical SEU anomaly: 1.5 day outage in 2007, 3 orbits max (5h) outage in 2009 with the « turbo » procedure.
 - A software patch developed by TAS was implemented onboard FM2 on September 2009. It allows an automatic reinitialisation in case of SEU anomaly on the DPS (Data Processing Subsystem).
 - The outage time will be reduced to almost zero for DPS SEU anomalies
 - Moon avoidance strategy
 - New strategy applied in 2009: switch to External Cal only during the part of orbit where the Moon appears in CS1 view
 - Reduced time in External Cal

⇒ Instrument availability is very good and is still improving!
Up to now, very good functional behaviour of IASI FM2

- No hardware anomaly
- No use of redundancy
- All functional anomalies have SEU or SET origin
IASI FM2 : functional status

- Very good health of all subsystems
 - Interferometer
 - Optical Bench
 - Reference Laser
 - Cube Corner Mechanism
 - Scan Subsystem
 - Hot Blackbody
 - Integrated Imager
 - Cold Box subsystem
 - Instrument Management Subsystem & Data Processing Subsystem
 - Active Thermal Control
 - Equipments power consumption
IASI FM2 : functional status

- Optical bench (OBU)
 - Thermal status
 - OBU perfectly regulated
 - Alignment stability
 - Low drift of CC offset
 - Stability of interferometric contrast
 ➔ no impact on spectral performances

![Graph of OBU optical area (HK sensor)](image)

![Graph of OBU CCA area (HK sensor)](image)
IASI FM2 : functional status

- RPD system: Laser + RAU (Reference Acquisition Unit)
 - Amplitude of OPD reference signal received by RAU:
 - low variations of the RAU amplitude but large margin w.r.t. the minimum functioning value (<100 mW)
 - Very good stability of the functioning point of the laser control loop
IASI FM2 : functional status

- Cube Corner Mechanism (CCM)
 Position Data Diagnostic telemetry (CCFD only)
 No change in the speed profile during the period
 → very good health status of the CCFD
Scan Mechanism Subsystem

- Position Data Diagnostic allow to check the stability of the positioning control loop.

Across track pointing stability better than 30 µrad (25m on ground)
Along track compensation speed = 5.49 mrad/s (target = 5.56 mrd/s)
Along track compensation error < 30 µrad (25m on ground)

⇒ Perfect behaviour of the scan
IASI FM2: functional status

- Blackbody Subsystem
 - Stability of BB temperature measurement

- Integrated Imager
 - Focal plane temperature
 - Drift of 0.13 K/year observed in orbit
 Same drift observed for the models still on ground (while IIS OFF or ON)
 Root cause under investigation (detector or telemetry measurement)
 - Analysis is ongoing (a working group was set up). We expect no impact on imager performance.
IASI FM2 : functional status

Cold Box Subsystem

- 3rd stage ATC regulation line
 - CBS average ATC power regulation : around 5mW
- Nominal thermal behaviour. No need to change the regulation target.

CBS 3rd stage regulation power

CBS 3rd stage ATC line temperature
IASI FM2: functional status

- IMS & DPS
 - DPS converter temperature
 - $\approx +0.5 \text{ K/year}$
 - IMS temperature
 - $\approx +0.7 \text{ K/year}$
 - Evolution correlated with Metop panel temperature
 - Stability of DPS mean power consumption

Graphs showing temperature changes over time for DPS and IMS systems.
IASI FM2 : functional status

- **Active Thermal Control**
 - 14 regulation lines (including CBS)
 - The 14 IASI ATC lines consumption is stable with margin on min and max power of each line
- **Nominal behaviour of IASI thermal control**

<table>
<thead>
<tr>
<th>PI line number</th>
<th>Reference</th>
<th>September 2008,01&02</th>
<th>+1 year</th>
<th>September 2009,01&02</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATC_1</td>
<td>USP (IIS area)</td>
<td>5.36 W + 0.37 W - 0.54 W</td>
<td>+ 0.05 W</td>
<td>5.41 W + 0.36 W - 0.52 W</td>
<td>OK</td>
</tr>
<tr>
<td>ATC_2</td>
<td>IIS objective</td>
<td>0.57 W + 0.20 W - 0.22 W</td>
<td>- 0.01 W</td>
<td>0.56 W + 0.19 W - 0.25 W</td>
<td>OK</td>
</tr>
<tr>
<td>ATC_3</td>
<td>ACW support</td>
<td>0.71 W + 0.01 W - 0.02 W</td>
<td>+ 0.00 W</td>
<td>0.71 W + 0.03 W - 0.03 W</td>
<td>OK</td>
</tr>
<tr>
<td>ATC_4</td>
<td>O.B.U. (optics area)</td>
<td>2.36 W + 0.17 W - 0.17 W</td>
<td>- 0.06 W</td>
<td>2.30 W + 0.19 W - 0.19 W</td>
<td>OK</td>
</tr>
<tr>
<td>ATC_5</td>
<td>MAS/CCE/SCU area</td>
<td>10.39 W + 2.14 W - 2.23 W</td>
<td>- 0.32 W</td>
<td>10.07 W + 2.35 W - 2.26 W</td>
<td>OK</td>
</tr>
<tr>
<td>ATC_6</td>
<td>MAS/CCE/SCU area</td>
<td>10.39 W + 2.14 W - 2.23 W</td>
<td>- 0.32 W</td>
<td>10.07 W + 2.35 W - 2.26 W</td>
<td>OK</td>
</tr>
<tr>
<td>ATC_7</td>
<td>O.B.U. (CCA area)</td>
<td>5.06 W + 0.28 W - 0.29 W</td>
<td>- 0.07 W</td>
<td>4.99 W + 0.30 W - 0.33 W</td>
<td>OK</td>
</tr>
<tr>
<td>ATC_8</td>
<td>CD</td>
<td>0.67 W + 0.12 W - 0.09 W</td>
<td>- 0.03 W</td>
<td>0.64 W + 0.15 W - 0.11 W</td>
<td>OK</td>
</tr>
<tr>
<td>ATC_9</td>
<td>LAU support</td>
<td>5.44 W + 0.91 W - 1.00 W</td>
<td>- 0.11 W</td>
<td>5.33 W + 1.00 W - 1.09 W</td>
<td>OK</td>
</tr>
<tr>
<td>ATC_10</td>
<td>C.B.S.</td>
<td>6.44 mW + 3.59 mW - 2.15 mW</td>
<td>- 1.0 mW</td>
<td>5.43 mW + 1.33 mW - 3.30 mW</td>
<td>OK</td>
</tr>
<tr>
<td>ATC_11</td>
<td>USP (MAS area)</td>
<td>3.72 W + 0.24 W - 0.24 W</td>
<td>- 0.08 W</td>
<td>3.63 W + 0.33 W - 0.32 W</td>
<td>OK</td>
</tr>
<tr>
<td>ATC_12</td>
<td>USP (BBC area)</td>
<td>13.36 W + 0.79 W - 0.56 W</td>
<td>- 0.01 W</td>
<td>13.35 W + 0.80 W - 0.62 W</td>
<td>OK</td>
</tr>
<tr>
<td>ATC_15</td>
<td>USP (CBS area)</td>
<td>8.48 W + 0.23 W - 0.27 W</td>
<td>- 0.01 W</td>
<td>8.47 W + 0.23 W - 0.27 W</td>
<td>OK</td>
</tr>
<tr>
<td>ATC_16</td>
<td>-Y wall</td>
<td>4.75 W + 0.42 W - 0.42 W</td>
<td>- 0.03 W</td>
<td>4.71 W + 0.36 W - 0.43 W</td>
<td>OK</td>
</tr>
</tbody>
</table>
No significant evolution of Telemetry level change after a new switch on correspond to a different phasing of the telemetry sampling w.r.t. the functioning cycle of the subsystem.

→ good status for all units

Equipments power consumption

IASI FM2 : functional status

- IIS
- CCM
- SCAN
- MAS
IASI FM2 : functional status

- Conclusion

- All appears as nominal on IASI
- No symptom of degradation can be observed
- Ageing effects appear very low
IASI instruments on ground

Two other IASI flight models in storage phase, already integrated on satellite: IASI PFM-R on Metop-B and IASI FM3 on Metop-C

- **Metop-B** : de-storage activities have started…
 - December 2009: IASI IMS & DPS EEPROM update
 - February 2010: SFT test (System Functional Test) at Astrium (Friedrichshafen)
 - April-June 2010: Thermal Vacuum test at ESTEC (Noordwijk)
 - 2011: Metop PLM and SVM coupling, SSVT test
 - April 2012: launch from Baïkonour

- **Metop-C**
 - Annual health checks (AFT tests) until de-storage
 - 2016: launch
IASI instruments on ground

- Annual health checks overview
 - AFT (Abbreviated Functional Test)
 - Ambiant functional test, with detectors OFF and CCM locked
 - Objectives: check system integrity, electrical interfaces, heater lines activation (ATC, SMA and DEC), activation of scan mechanism
IASI FM3

- Anomalies on 2 thermistors (Fenwall thermistors): erratic behaviour of the measured temperature
 - 1 thermistor used for ATC line will be replaced
 - 1 thermistor used for monitoring will not be replaced (monitoring function will be addressed to another thermistor)
IASI instruments on ground

- Incoming Thermal Vacuum test with IASI PFM-R
 - Objective: verification of IASI spectral and radiometric performances
 - No evolution since last Optical Vacuum Test at TAS Cannes (2006)
 - No impact of perturbations coming from other instruments
Conclusions

■ IASI FM2
 • Nominal behaviour
 • Very good health of the instrument
 • Instrument availability is very good and still improving

■ IASI PFM-R and FM3
 • De-storage activities have started for PFM-R. Launch 2012.
 • FM3 in storage. Launch 2016.
 • No functional anomaly on PFM-R. Fenwall anomalies on FM3 will be treated before launch.

■ Thanks to all the IASI team at CNES, TAS & EUMETSAT !