

Status of GOSAT development and operation plan

Kei Shiomi, Akihiko Kuze, Hiroshi Suto, Shuji Kawakami, Masakatsu Nakajima, Takashi Hamazaki

Japan Aerospace Exploration Agency e-mail: shiomi.kei@jaxa.jp

First IASI Conference, Anglet, France, 15 Nov., 2007

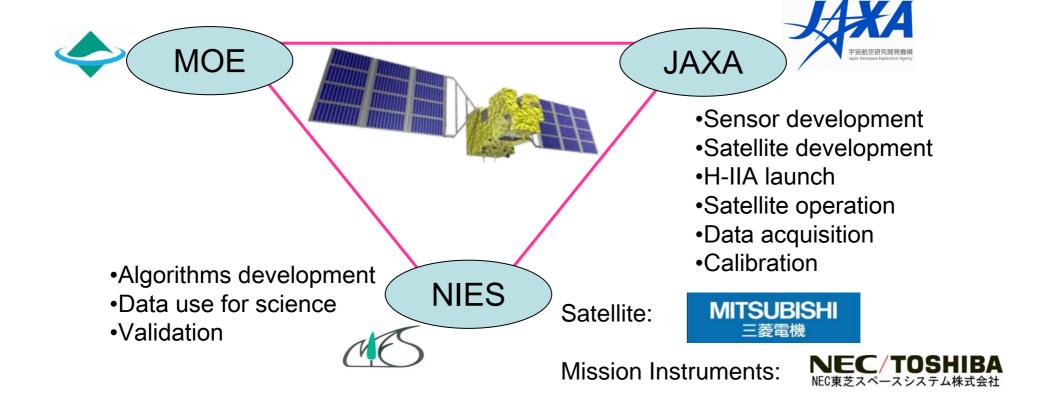
Contents

- Introduction
- **■**GOSAT Satellite System
- TANSO FTS and CAI Instruments
- **■**GOSAT Operation Plan
- Collaboration Activities
- Summary & Announcement

Introduction

- Greenhouse gases Observing SATellite
 - Monitoring the global distribution of Green House Gases (GHGs)
 - Joint project
 - Japan Aerospace Exploration Agency (JAXA)
 - Ministry of Environment (MOE)
 - National Institute for Environmental Studies (NIES)
 - Launch schedule: Dec. 2008
- Status of sensor development
 - EM integration and test: finished in Sep. 2007
 - PFM integration and test: schedule to complete in Dec. 2007

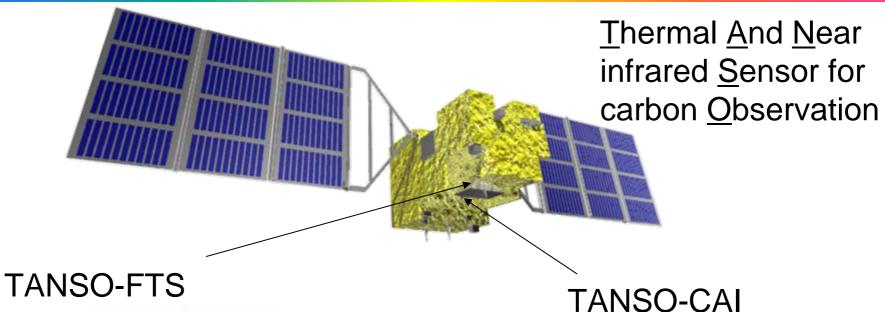
Mission Target

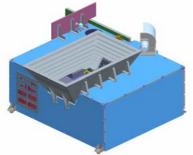


- To observe CO₂ and CH₄ column and profile
 - at 100-1000km spatial scale (with pointing mechanism)
 - with relative accuracy of 1% for CO₂ (4 ppmv, 3 month average) (target 1ppmV) and 2% for CH₄.
 - during the Kyoto Protocol's first commitment period (2008 to 2012).
- To reduce sub-continental scale CO₂ annual flux estimation errors by half
 - 0.54 GtC/yr → 0.27 GtC/yr

Organization

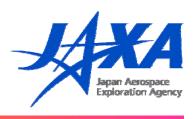
Satellite Specification


Size	Main body	3.7 m x 1.8 m x 2.0 m (Wing Span 13.7m)		
Mass	Total	1750kg		
Power	Total	3.8 KW (EOL)		
Life Span		5 years		
Orbit	sun synchronous orbit			
	Local tim	ne	13:00+/-0:15	
	Altitude		666km	
	Inclination		98deg	
	Re-visit		3 days	
Launch	Vehicle		H-IIA	
	Schedule	9	2008	

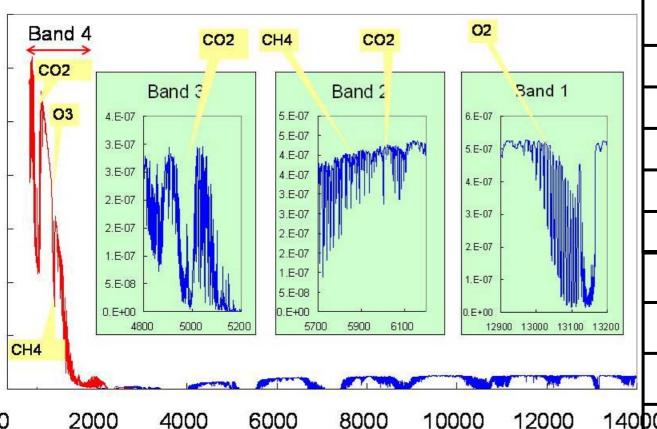


Satellite Configuration

SWIR and TIR FTS



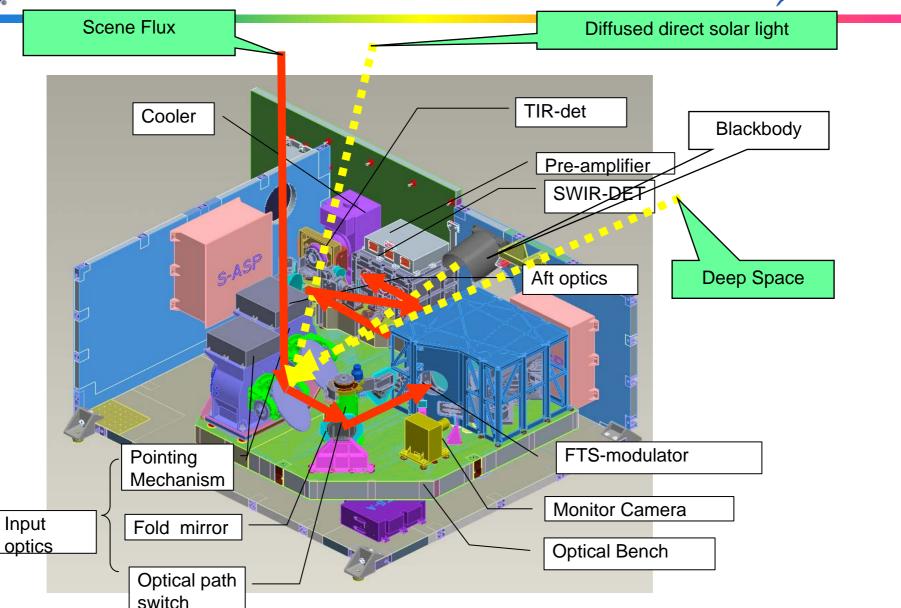
UV, Visible, SWIR Cloud and Aerosol imager



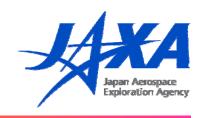
TANSO-FTS Specifications

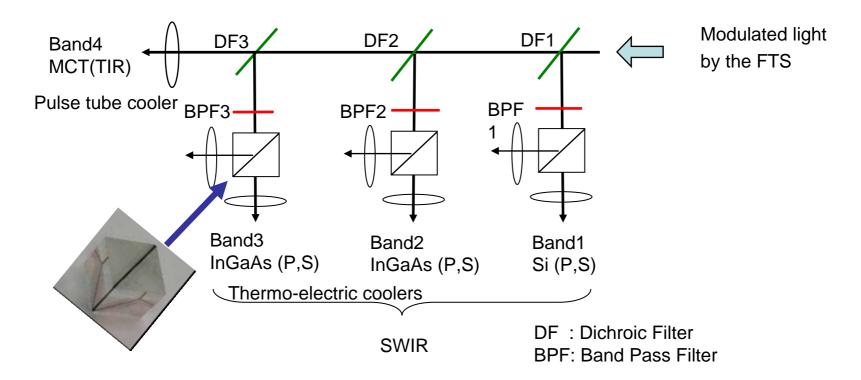
Ground Pointing	Configuration	2-axes scanner (fully redundant) for ground pointing and calibration				
Mechanism and Fore	Scanning Cross Track (+/-35 °) Along Track (+/-20 °)					
optics	Field of view	IFOV <10.5 km 790 km (CT width) (latitude of 30 °)				
Fourier	Speed	0.25, 0.5, 1 (Interferogram)/s				
Transform Spectrometer	Spectral band	1P, 1S	2P, 2S	3P, 3S	4	
	Coverage (µm)	0.75-0.78	1.56-1.72	1.92-2.08	5.5-14.3	
	resolution(cm ⁻¹)	0.5	0.2	0.2	0.2	
		0.2 cm ⁻¹ spacing (+/- 2.5 cm MOPD)				
	Detector	Si	InGaAs	InGaAs	PC-MCT	
	Calibration	Solar Irradiance, Deep Space, Moon, Diode Laser (1.55 micron, ILS) Blackbody, Deep space				

GOSAT Greenhouse gases TANSO-FTS Observation Targets Japan Aerospace Exploration Agency



A CONTRACTOR OF THE CONTRACTOR			
Gases	min (µm)	max (µm)	Band
O ₂	0.75	0.78	1
CO ₂	1.56	1.62	2
CH₄	1.66	1.67	2
H ₂ O	1.92	2.08	3
CO ₂	1.92	2.08	3
H ₂ O	5.5	7.1	4
CH ₄	7.0	8.2	4
O ₃	9.1	10.1	4
⁰⁰ CO ₂	10.1	10.87	4
CO ₂	12.8	14.3	4


TANSO-FTS Configuration

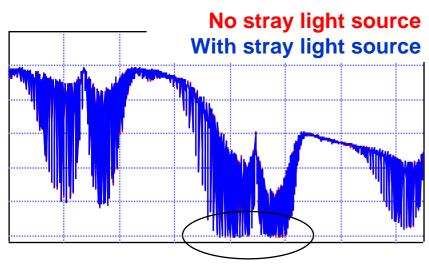


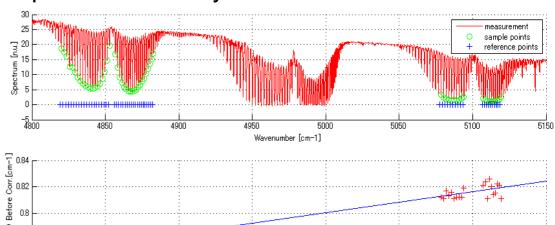
TANS-FTS Aft-Optics

- The modulated light by the FTS is divided into four spectral bands with dichroic filters.
- The SWIR bands lights are divided into two detectors with the polarization beam splitters.
- The InGaAs detectors are cooled with thermo-electric coolers.
- The TIR light is collected on the MCT detector, which is cooled with the pulse tube cooler.

Pre-flight Test Items

Item	Configuration	
Signal to Noise Ratio	Halogen lamp Integrating Sphere (SWIR)	
	Large Aperture Cavity Blackbody in TVT (TIR)	
Instrument Line Shape Function	Ar lamp Integrating Sphere and Tunable diode laser	
(shape and wavelength)		
Radiometric Response	Fix Point Blackbody and Integrating Sphere	
(Non liner correction if exists)	Large Aperture Cavity Blackbody (TIR)	
IFOV (Response distribution within a pixel if exists)	Collimator with Alignment test	
Diffuser BRDF	Spherical Distributed Detectors	
Onboard Laser temperature dependency	Wavelength meter	
Response Stability	Halogen lamp Integrating Sphere and light source monitoring radiometers	
Stray Light	Halogen lamp Integrating Sphere and CO ₂ cell	
Micro-vibration	Ar lamp Integrating Sphere and Shaker	


CO2 cell measurements



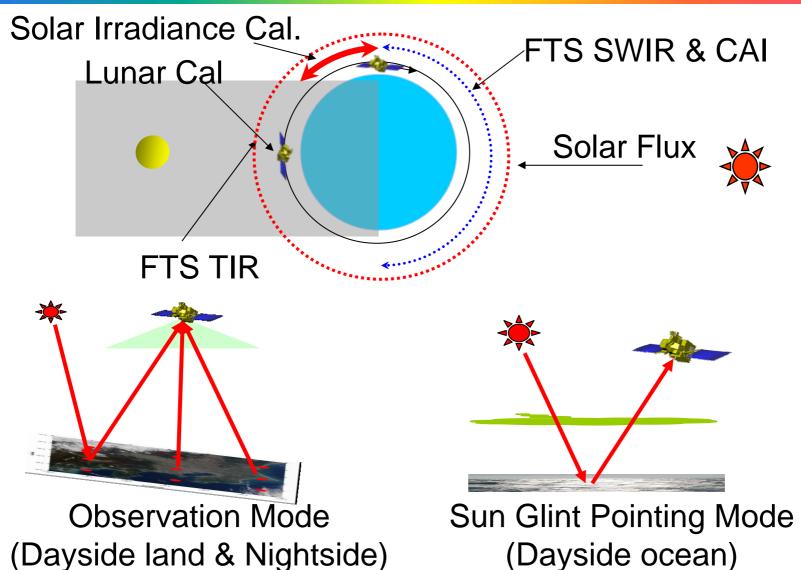
Stray light

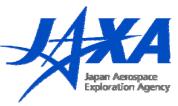
- Stray light effect far from FOV
- Measurement of saturated CO₂ absorptions whether no change or going-up
- No significant AC stray light
- Spectral calibration
 - Laser wavelength precision ~10⁻⁶
 - Spectral accuracy ~ 4x10⁻³ cm⁻¹

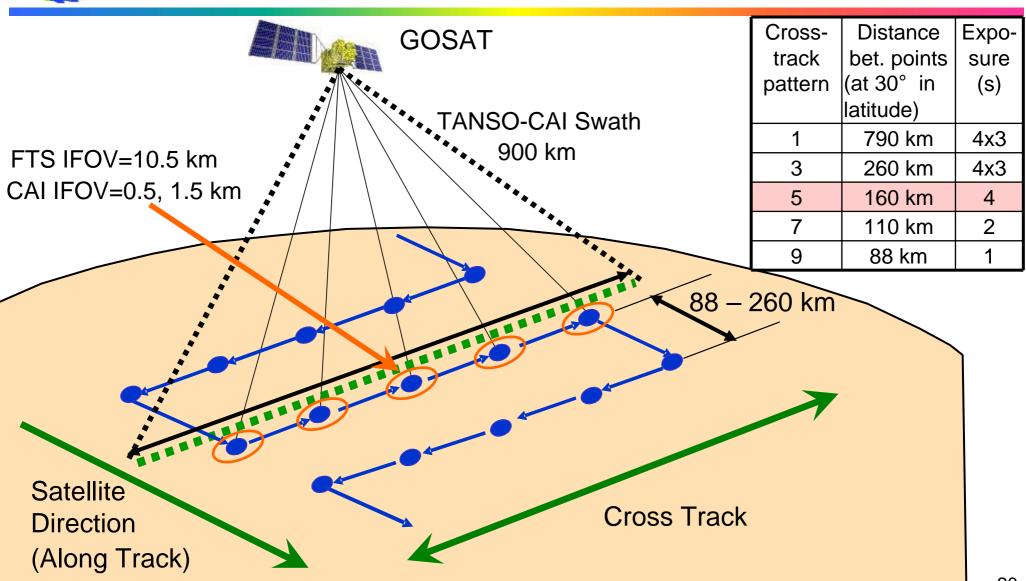
Wavenumber measured by Sampling laser [cm-1]

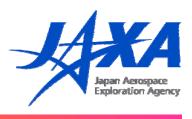
TANSO-CAI

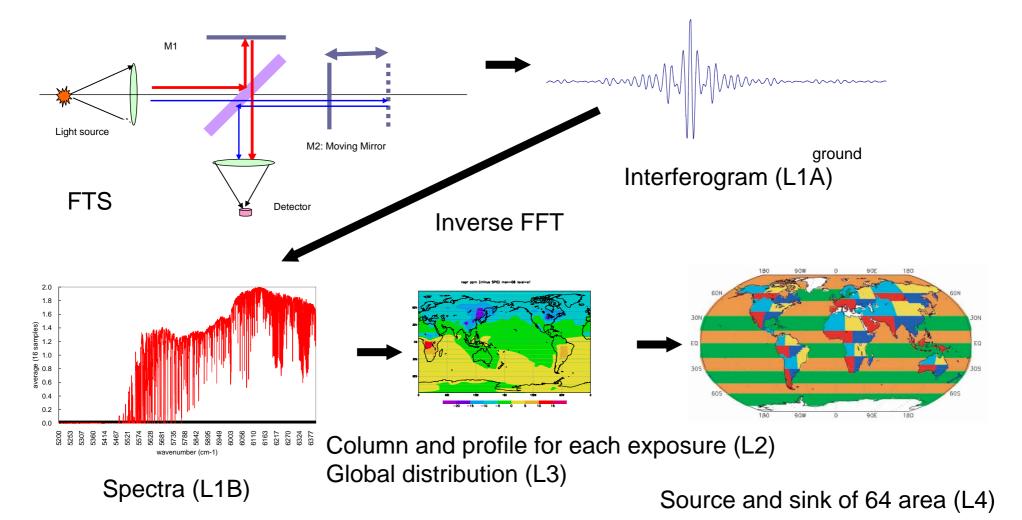
- TANSO-CAI is operated together with TANSO-FTS
 - detect aerosol spatial distribution and cloud coverage
 - retrieve scattering spectral characteristics of aerosol


Band	Observation	Center	Spatial	FOV	No. of Pixels
No.	Band (nm)	Wavelength (nm)	Resolution (IFOV) (km)	(km)	(cross track)
1	372-387	380	0.5	1000	2000
2	667-680	678	0.5	1000	2000
3	866-877	870	0.5	1000	2000
4	1560-1640	1620	1.5	750	500


Operation Modes




Pointing and Foot prints

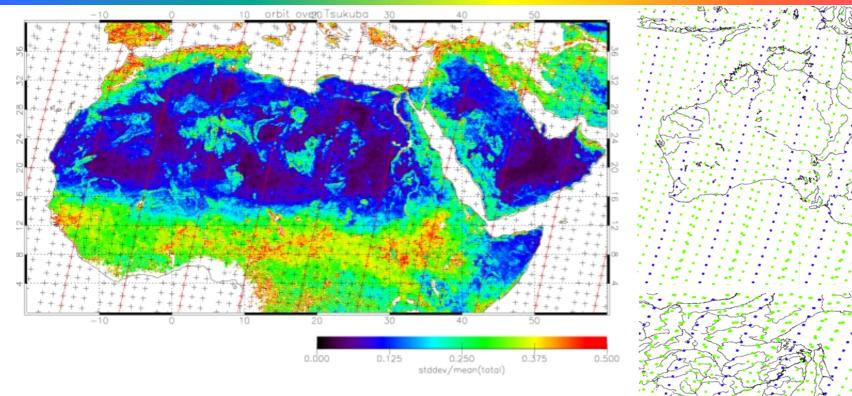


TANSO-FTS Data Flow

Data Distribution of TANSO-FTS

L1A HDF5 format		Interferogram
L1B HDF5 format	OOSAT BMM Intercent Live Drage Function Streamer Color BMM Intercent Live Drage Function Stream	(TANSO-FTS-SWIR) Earth Albedo: Measured spectra ((raw spectra) by (Instrument line shape)) divided by solar irradiance measured by onboard solar diffuser (TANSO-FTS-TIR) Spectral radiance ILSF (Instrument Line Shape Function) is also provided.
L2 HDF5 format	$XCO_2 = 8 \times 10^{21}$ molecule/cm ² (sample) $XCH_4 = 4 \times 10^{19}$ molecule/cm ² (sample)	(SWIR) Column amount using differential absorption (TIR) vertical profile
L3 NETCDF format	The ser Orline PSI model turing to the service of t	Global distribution of CO ₂ ,CH ₄ (every 3 days and monthly mean)
L4 NETCDF format	200 00 00 00 00 00 00 00 00 00	Source and sink distribution of 64 area

Data Distribution of TANSO-CAL



L1A HDF5 format	Raw digital data Parameters for geometrical and radiometric calibration
L1B HDF5 format	Calibrated radiance Geolocation resampling
L2 HDF5 format	Physical parameters of cloud property (amount, coverage) and aerosol property (type, particle size, optical thickness)
L3 HDF5 format	Global distribution of radiance cloud and aerosol (every 3 days)

Preparation of Post-launch Cal/Val

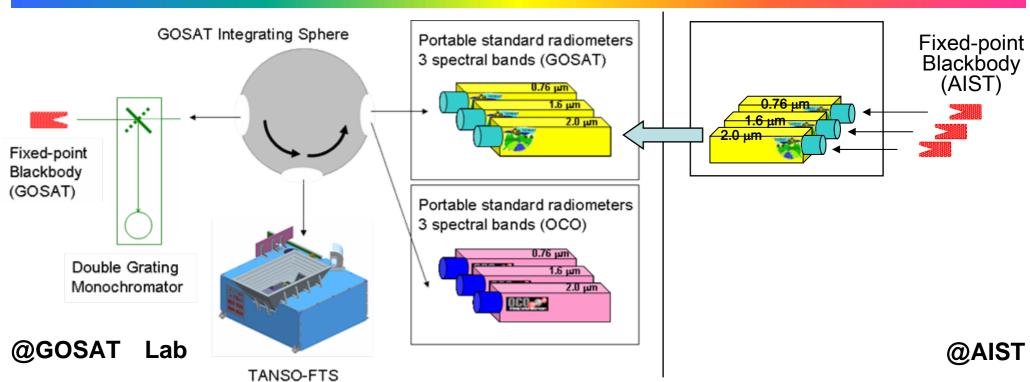
- Scene selection for
 - Radiance comparison with other similar sensor and DB simulation
 - Geolocation
 - Cal/Val locations

Master Schedule

- Operation phase and Data release
 - Launch date: Dec., 2008
 - Initial operation: L~L+6 M
 - Initial check-out
 - Cal/Val phase
 - Normal operation: L+6 M~
 - L1 release: L+6 M~
 - L2 release: L+9 M~
 - Nominal lifetime: 5 years
- Research announcement and Science plan
 - 1 year before launching

	GOSAT (JAXA)	OCO (NASA)	
Spectrometer Spatial CeO II a	ooration A	ctivitles	
Spectral coverage	Wide with single spectrometer	Limited 3 spectral channels	
Target	CO ₂ , CH ₄	CO ₂	
Validation and pre launch calibration	Common target		
Data base	Share		

Collaboration items with OCO



- Cross calibration in PFT
 - Intercomparison with calibrated standard radiometers and integrating spheres
- Data exchange
 - Line parameters
 - Cal/Val datasets of ground-based measurements (ex. Solar spectra, CO₂ column and profile)
 - Observation data
- Activities
 Cal/Val experiments (ex. Park Falls, Railroad Valley)

Methodology of Cross Calibration

- Preparatory experiment : Aug., 2007
 - The GOSAT standard radiometers and integrating sphere are evaluated by comparison with AIST standard light sources.
- X-cal at JPL : Feb, 2008
- X-cal in Japan : 2008

Summary & Announcement >

Summary

- The satellite and sensor EM test has been completed. Currently, the PFM is integrated and will be characterized.
- We prepare the post-launch operation plan of GOSAT.
- We collaborate with OCO group for some items and activities have started.

Announcement

- Research announcement has been prepared and will be released soon. The GOSAT science plan will be distributed.
- Please apply the Cal/Val activities of L1/L2, various data application of L1/L2 and more higher data for your purposes. Welcome to GOSAT project!

Advantage of GOSAT

- Simultaneous observations of SWIR and TIR spectra
 - SWIR target is dayside over land and ocean with sun glint tracking.
 - TIR target is dayside and nightside.
- Cloud and aerosol observation with higher resolution than FTS
- Other topics
 - Polarization
 - Other trace gases
 - Cloud property by simultaneous observation of UV-TIR
- Different local time observation of IASI(9:30), and GOSAT(13:00)
- But, the same place observation together and comparison