

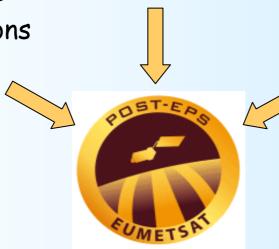
Post-EPS Overview

Peter Schlüssel

Pepe Phillips, Christophe Accadia, Rosemary Munro, Stefano Banfi, Julian Wilson, Abelardo Perez-Albiñana

EUMETSAT mandate for Post-EPS

EUMETSAT's Objectives

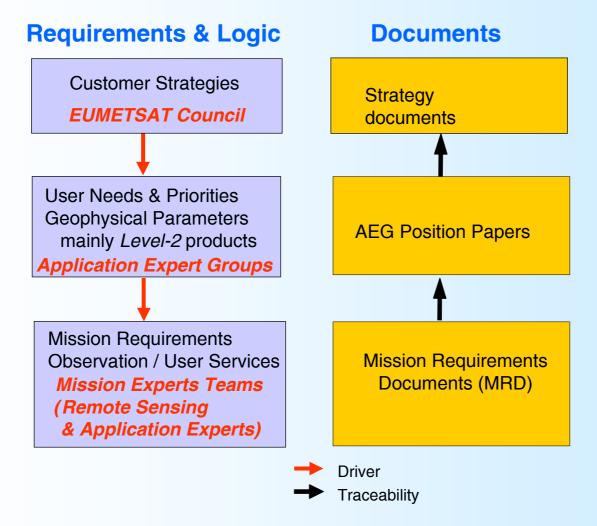

Operational Meteorology

Climate Monitoring

Mandatory Programmes

Continuation of observations

from <u>geostationary</u> and <u>polar orbits</u>


25 Year Strategy

Environmental services (oceans, atmosphere, land, biosphere, natural disasters - if driven by or driving meteorology and climate)

In the early stages (Phase O/A), EUMETSAT has the goal to establish the European Requirements as a basis for constructive discussions with Partners for future cooperation

Requirements drivers and traceability

Post-EPS preparatory activities

- Establishment prioritised user requirements
 - Start from MTG user consultation
 - Add requirements relevant for "new services" not covered before
 - Recognize evolution in target application areas
 - Add requirements dedicated to polar regions
- Derivation of mission requirements and preliminary system concepts
- Instigation of scientific studies in support to the system concept studies.
- Formulation of constraints
 - Budgetary
 - Co-operation with partner agencies (ESA, NOAA)
- Need dates
 - **-** 2020
 - 2018 for minimising risks in EPS regarding core missions: mid-morning sounding and imaging

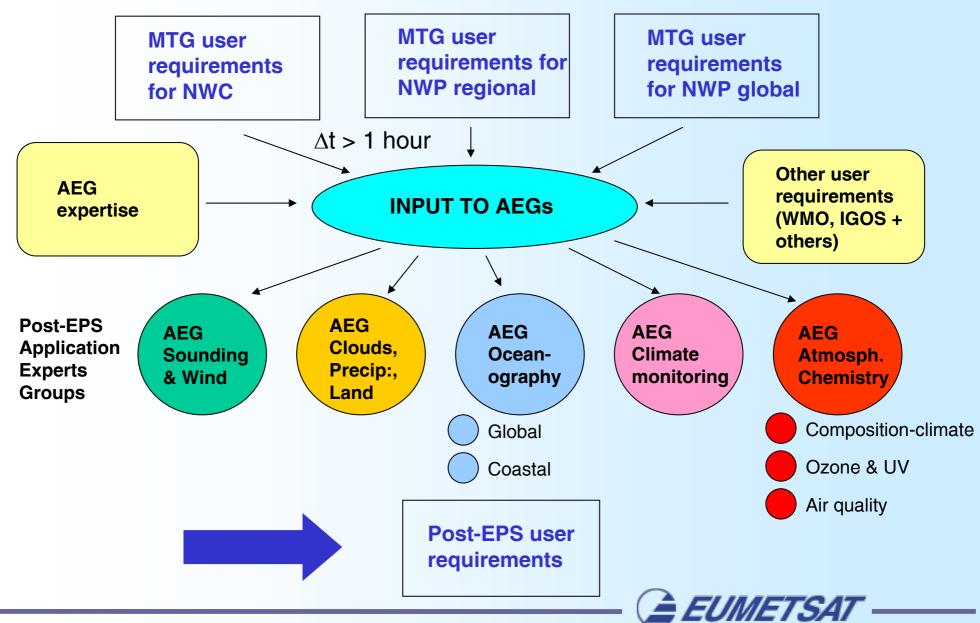
European contribution and commitment to environment and climate observations is evolving

- Development of the European initiative of Global Monitoring for Environment and Security (GMES) places space-based observations at the heart of future European activities for managing the European environment
- GMES is identified as the main European contribution to international initiatives such as Global Earth Observation System of Systems (GEOSS)
- EUMETSAT operational satellite systems are key elements of established spacebased observing system coordinated by WMO, i.e. existing elements of a GEOSS
- EUMETSAT programmes are a sine-qua-non for space- based observing systems

Tentative missions

- Atmospheric sounding
- Wind profiling
- Ocean imaging, including sea ice and surface winds
- Ocean surface topography
- Cloud, precipitation, and large-scale land surface imaging
- Atmospheric chemistry
- Climate monitoring (to be supported within above missions)

What is new in terms of high-level needs for Post-EPS?


- Trend in the evolution of numerical weather prediction and climate models, to more accurately represent the Earth system as a whole, create broader set of observational requirements for Post-EPS covering
 - Atmosphere, including physics and chemistry
 - Ocean
 - Land surface analysis at large scale
 - Cryosphere
 - Hydrology
- Trend towards the assimilation of cloudy radiances in numerical weather prediction creates the need for microphysical cloud and precipitation observations for supporting sub-grid scale parameterisations
- Need to monitor the influence of human activity on the composition of the atmosphere creates user needs for observations supporting monitoring of climate and atmospheric chemistry

User Requirements Definition

- List of objective and threshold requirements in terms of geophysical parameters
 - Objective: Observation goal
 - Breakthrough level: Expected to make a delta improvement in the targeted service
 - Threshold: Minimum level for usefulness
- Accuracy
- Spatial sampling
- Temporal sampling
- Reporting delay
- Priority

Towards Candidate Observation Missions

- On the basis of the user needs, candidate observation missions and requirements were identified with the support of the Post-EPS Mission Experts Team (PMET) -> post-EPS Mission Requirements Document (MRD)
- Due to the breadth of the user requirements, as many as 20 missions could be needed!
- Approach taken to implement of a suite of 'baseline' missions covering a wide range of applications rather than fewer sophisticated missions, covering only a few applications
- The baseline level of performance is determined by the driving requirements and further moderated by feasibility and maturity of the observation techniques
- The primary missions have been identified by extent to which they fulfil the EUMETSAT mandate and strategy, the maturity of the observation technique and the continuation of heritage missions, in particular EPS missions

Candidate Observation Missions (1/2)

Name / Heritage Instruments	Main Products
High-Resolution Infrared Sounding (IRS) IASI , AIRS	Temperature and water-vapour profiles surface temperature, trace gases
Microwave Sounding (MWS) AMSU-A, MHS	Temperature and water-vapour profiles
Radio Occultation Sounding (RO) GRAS, COSMIC	Temperature and water-vapour profiles
Differential Absorption Lidar (DIA)	Water vapour profile
Doppler Wind Lidar (DWL) ADM/Aeolus	Horizontal wind vector profile
VIS/IR Imaging (VII) AVHRR, MODIS	Clouds: type, cover profile, optical depth, top temperature, top height Water-vapour imagery Aerosol optical depth (total and gross profile)

Candidate Observation Missions (2/4)

Name / Heritage Instruments	Main Products
Microwave Imaging (MWI) SSM/I, SSMIS, AMSR-E, SMOS	Cloud liquid water/ice water content (total and gross profile) Cloud cover profile Precipitation profile and rate at the ground Water vapour imagery Sea, ice, land surface temperature Soil moisture Snow cover, water equivalent, depth, wet/dry status Sea ice coverage, type Sea surface salinity
Cloud and Precipitation Profiling Radar Mission (CPR) Cloudsat-CPR, Earthcare-CPR	3D precipitation intensity and type 3D cloud water and ice content
Radiant Energy Radiometry (RER) CERES, BBR	Solar reflected and terrestrial emitted radiation

Candidate Observation Missions (3/4)

Name	Main Products
Dual View Radiometry (DVR) ATSR, AATSR	Sea and sea ice surface temperature
Ocean Colour Imaging (OCI) SeaWiFS, MERIS	Chlorophyll, Yellow substance, Water sediment Oil-spill cover
Scatterometry (SCA) ASCAT, QSCAT	Ocean surface wind vector
Radar Altimeter (ALT) Jason-2	Sea surface height Significant wave height
Nadir viewing UV/VIS/NIR - SWIR Sounding (UVNS) GOME-2, SCIAMACHY, OMI	O ₃ profile, total column of SO ₂ , NO ₂ , H ₂ O, CO, CH ₄ Aerosol optical depth

Candidate Observation Missions (4/4)

Name	Main Products
Limb Millimetre-Wave (MMW) MLS	Profiles of H ₂ O, O ₃ , CO in UT and LS
Limb Infra-Red (LIR) MIPAS	Profiles of H ₂ O, O ₃ , CH ₄ in UT and LS and above Temperature profile in stratosphere and cloud free UT
Aerosol Profiling Lidar (APL) CALIOP, ATLID	Aerosol optical thickness profile
Multi-Viewing Multi-Channel Multi-Polarisation Imaging (3MI) POLDER	Aerosol optical depth, particle size, type, height index
Total Solar Irradiance Monitoring (TSIM) SORCE	Incoming total solar irradiance

Synergy and co-registration of missions

Name	Essential Co-registration	Desired Synergy
IRS	VII (only 6 channels)	MWS, 3MI
MWS		IRS
DIA		IRS
VII		MWI, 3MI
MWI		VII, SCA, CPR
CPR	MWI	APL
RER		ЗМІ
DVR		OCI
ALT	MWI (only 2 channels)	
OCI		DVR
SCA		MWI
UVNS	VII	IRS, APL, 3MI
LIR		MMW
APL		UVNS, IRS, VII
ЗМІ		VII CA FUMETSAT

Mission requirements and prioritisation

- Mission requirements provide geometrical, spectral and radiometric requirements in terms of threshold, breakthrough, and objective requirements on the basis of user requirements listed in the AEG Position Papers
- Mission requirements are prioritised within each mission, giving a ranking among the requirements (e.g. geometrical versus spectral resolution)
- Beyond the baseline further prioritised requirements are given
- Mandatory and desired synergies of observation missions have been identified
- Observation missions have been prioritised according to their general weight in the various application areas and the demand for continuity

IASI Follow-on: NWP (1/2)

Mission Band	Wave number (cm ⁻¹)	Purpose	Prior.	Spectral Resolution (cm ⁻¹) (T/B/O)	Radiometric Noise (K) @ 280 K
IRS-0	550 - 645	WV profile	4	0.5/0.3/0.1	0.5/0.3/0.2
IRS-1	645 - 770	T profile	1	0.5	0.3/0.2/0.1
IRS-2	770 – 1000	T and WV profiles, SST, Surface and cloud properties	1	0.5	0.15/0.1/0.05
IRS-3	1000 – 1070	O ₃ column	2	0.5/0.3/0.1	0.5/0.3/0.1
IRS-3a	1030 – 1080	O ₃ profile	2	0.15/0.1/0.075	0.1/0.075/0.05
IRS-4	1070 – 1150	Surfaces and cloud properties	2	0.5/0.3/0.2	0.1/0.075/0.05

IASI Follow-on: NWP (2/2)

Mission Band	Wave number (cm ⁻¹)	Purpose	Prior.	Spectral Resolution (cm ⁻¹) (T/B/O)	Radiometric Noise (K) @ 280 K
IRS-5	1150 – 1650	Water vapour profile	1	0.5/0.25/0.1	0.15/0.075/0.05
IRS-5b	1280 – 1360	T profile, and N ₂ O, CH ₄ columns	2	0.3/0.15/0.1	0.2/0.1/0.05
IRS-6	1650 – 2100	WV profile, NO ₂ Column	1	0.5/0.25/0.1	0.15/0.075/0.05
IRS-8	2160 – 2250	T profile, and N ₂ O, CO ₂ columns	2	0.5/0.3/0.1	0.3/0.2/0.1
IRS-9	2250 – 2420	T profile	1	0.5/0.3/0.1	0.3/0.2/0.1
IRS-10	2420 – 2700	SST, surface and cloud properties	2	0.5/0.3/0.1	0.3/0.2/0.1

IASI Follow-on: AC (1/2)

Mission Band	Wave number (cm ⁻¹)	Purpose	Prior.	Spectral Resolution (cm ⁻¹) (T/B/O)	Radiometric Noise (K) @ 280 K
IRS-2a	800 – 850	C ₂ H ₆	3	0.5/0.25/0.1	0.1/0.075/0.05
IRS-2b	860 – 900	HNO ₃ , CFC	2	0.15/0.1/0.075	0.1/0.075/0.05
IRS-3 (only if IRS-3a not available)	1000 – 1070	O ₃ column	1	0.5/0.3/0.1	0.5/0.3/0.1
IRS-3a	1030 – 1080	O ₃ profile	1	0.15/0.1/0.075	0.1/0.075/0.05
IRS-4a	1120 – 1160	Volcanic SO ₂	2	0.5/0.25/0.1	0.1/0.075/0.05
IRS-4b	1130 – 1200	PAN	3	0.5/0.25/0.1	0.1/0.075/0.05
IRS-5a	1340 – 1380	Volcanic SO ₂	4	0.5/0.25/0.1	0.1/0.075/0.05

IASI Follow-on: AC (2/2)

Mission Band	Wave number (cm ⁻¹)	Purpose	Prior.	Spectral Resolution (cm ⁻¹) (T/B/O)	Radiometric Noise (K) @ 280 K
IRS-5b	1280 – 1360	T profile, and N ₂ O, CH ₄ columns	2	0.3/0.15/0.1	0.2/0.1/0.05
IRS-6	1650 – 2100	WV profile NO ₂ column	3	0.5/0.25/0.1	0.15/0.075/0.05
IRS-7 (only if IRS-7a not available)	2100 – 2150	CO column	1	0.5/0.25/0.1	0.3/0.2/0.1
IRS-7a	2140 – 2180	CO profile	1	0.15/0.1/0.075	0.15/0.1/0.05
IRS-8	2160 – 2250	T profile, N ₂ O and CO ₂ columns	2	0.5/0.3/0.1	0.3/0.2/0.1
IRS-11	2700 – 2760	CH₄ column	3	0.5/0.3/0.1	0.3/0.2/0.1
IRS-12	2760 – 2900	CH₄ column	4	0.5/0.3/0.1	0.3/0.2/0.1

IASI Follow-on

- Bias: < 0.5 K, stable over any one orbit and over lifetime: 0.1...0.5 K
- On-ground IFOV diameter at nadir: O/B/T = 5 km /8 km / 12 km
- On-ground sampling at nadir: O/B/T = 10 km / 15 km / 50 km
- Synchronisation with a multi-spectral imager to aid scenes analysis

Next steps

- During the next stages, feasibility, cost drivers, value, affordability and possible commitments of potential customers and partners will be assessed
- Concept architecture (phase 0) studies at instrument and system level will shortly commence with the support of ESA, industry, and representatives of the user and science communities
- Following national initiatives (CNES: IASI follow-on, DLR: optical imager)

Phase 0	Concepts and feasibility studies	2005 - 2008
Phase A	Definition	2009 – 2010
Phase B	Preliminary design	2011 – 2013
Phase C, D	Detailed design and production	2014 – 2019
Phase E	Utilisation	from 2018/2020

Acklowledgements

The guidance received from the

Post-EPS Application Experts Groups and the Post-EPS Mission Experts Team

is gratefully acknowledged

