

Atmospheric and Surface Property Retrievals from IASI and NAST-I

Xu Liu NASA Langley Research Center, Hampton VA 23662 Xu.Liu-1@nasa.gov

> D. K. Zhou, A. M. Larar (NASA LaRC) W. L. Smith (HU and UW) P. Schluessel (EUMETSAT) J. Taylor (UK MetOffice) Stephen A. Mango (NPOESS/IPO) and many more....

Presentation Outline

- Introduction
- PCRTM forward model and retrieval algorithm
- Results from IASI and NAST-I
- Conclusions

Introduction

1305 x 3 x 3

8632 x 1 x 1

• Modern hyperspectral sounders have thousands of channels

- AIRS (Atmospheric Infrared Sounder): 2378 x 1 x1
- CrIS (Cross Track Infrared Sounder):
- NAST-I (NPOESS Airborne Sounder Testbed):
- IASI (Infrared Atmospheric Sounding Interferometer)
 8461 x 2 x 2
- GIFTS (Geostationary Imaging Fourier Transform Spectrometer): 1827 x 128 x 128

• Channel radiances are difficult to calculate

- Double integral non-linear equation

$$\begin{split} R_{\nu} &= \int_{\Delta\nu} \{ \varepsilon_{\nu} B_{\nu}(T_{s}) t_{s,\nu} + \int_{p_{s}}^{0} B_{\nu}(T(p)) \frac{\partial t_{\nu}(p,\theta_{u})}{\partial p} dp \\ &+ (1 - \varepsilon_{\nu}) t_{s,\nu} \int_{0}^{p} B_{\nu}(T(p)) \frac{\partial t_{\nu}^{*}(p,\theta_{d})}{\partial p} dp + \rho_{\nu} t_{s,\nu} t_{\nu}(p_{s},\theta_{sun}) F_{0,\nu} \cos \theta_{sun} \} \phi(\nu - \nu') d\nu' \\ &= \int_{\Delta\nu} \{ \varepsilon_{\nu s} t_{\nu,N_{bot}} B_{\nu,s} + \sum_{i=N_{bot}}^{N_{top}} (t_{\nu,i-1} - t_{\nu,i}) B_{\nu,i} + (1 - \varepsilon_{\nu s}) t_{\nu,N_{bot}} \sum_{i=N_{top}}^{N_{bot}} (t_{\nu,i}^{*} - t_{\nu,i-1}^{*}) B_{\nu,i} \\ &+ \rho_{s} t_{\nu,N_{bot}} t_{sun}(p_{s},\theta_{sun}) F_{0,\nu} \cos \theta_{sun} \} \phi(\nu - \nu') d\nu' \end{split}$$

• Key to utilizing the high information content of hyperspectral data

- Fast and accurate radiative transfer model
 - Explore channel-to-channel correlations
- Efficient and stable retrieval algorithm
 - Use as many channels as possible to beat down the instrument noise

predicts PC scores (Y) instead of channel radiances (R)

PC scores (super channels) are linearly related to channel radiances

Principal Component-based Radiative Transfer Model (PCRTM)

$$\vec{Y} = A \times \vec{R}^{mono}$$

• The relationship is derived from the properties of eigenvectors and instrument line shape functions:

$$\vec{Y} = U^T imes \vec{R}^{char}$$

$$R_i^{chan} = \frac{\sum_{k=1}^N \phi_k R_k^{mono}}{\sum_{k=1}^N \phi_k}$$

- Jacobian is provided in EOF space directly
- Very accurate relative to LBL
 - Accuracy of the model can be adjusted
- Cloud contributions included
- Channel radiances (or transmittances) can be obtained easily

$$ec{R}^{chan} = U imes ec{Y} = \sum_{i=1}^{N_{EOF}} y_i ec{U}_i + ec{arepsilon}$$

• Liu et al Applied Optics 2006

Description of PCRTM

Results of Applying PCRTM to IASI

- An Example of the IASI spectrum and the difference between the LBL calculated radiance and the PCRTM calculated radiance
- Errors less than 0.05 K

PCRTM accuracy:

- Top: RMS error
- Middle: Bias error
- IASI instrument noise
- Very good relative to LBL
- Much smaller error relative instrument noise

Comparison with NAST-I observations

- NAST-I spectrum take over Potenza Italy on September 9th, 2004
- Emissivity fix to 0.98 (not the truth)
- T, H₂O taken from LIDAR measurements
- O₃ fixed to US standard ATM
- PCRTM and LBLRTM calculated radiances agree with each other (< 0.07 K)
- main sources of error between the NAST-I observed and PCRTM calculated radiances
 - Spectroscopy
 - Uncertainty in the "true atmospheric state"

Liu et al., First IASI Conference Meeting, November 13-16, 2007, Anglet, France

Flow diagram of the PCRTM retrieval algorithm

 $X_{n+1} - X_a = (K^T S_y^{-1} K + \lambda I + S_a^{-1})^{-1} K^T S_y^{-1} [(y_n - Y_m) + K(X_n - X_a)]$

- All parameters retrieved simultaneously
 - No need to estimate errors of non-retrieved parameters
- Very robust
 - Can start from either climatology or regression first guesses
- Single FOV retrieval
 - High spatial resolution
 - Cloud parameters retrieved explicitly
 - Multiple scattering effect included
- Provide error covariance matrix of state vector without extra calculations
 - Provides info needed by 3D/4Dvar
 - Error correlations included
 - Compressed state vector and associated error covariance matrix
- Both radiance and state vectors are in EOF domain
 - Small matrix and vector dimensions
 - Simply minimizing cost function
 - No ad hoc tuning parameters

Retrieved Surface Skin Temperature and Cloud Properties Near Anglet France (Nov. 4, 2007)

3-D Atmospheric Temperature, H₂O, O₃, and CO Structure over Anglet France

- A movie showing IASI T, H₂O, O₃, and CO cross-sections on November 4, 2007
 - T and H₂O as a function of altitude
 - T and $H_2^{-}O$ along satellite track
 - T and H_2O x-track
 - CO and O_3 as a function of altitude

3-D Atmospheric Temperature, H₂O, O₃, and CO Structure over Anglet France

- Another movie showing IASI T, H₂O, O₃, and CO cross-sections on November 4, 2007
 - T and H_2O as a function of altitude
 - T and H_2O along satellite track
 - T and H_2O x-track
 - CO and \overline{O}_3 as a function of altitude

Comparison of T and RH Between PCRTM Retrieval and Radiosonde Near Anglet France (Nov. 4, 2007)

Retrieved Cloud Parameters and Surface Skin Temperature (April 19, 2007, JAIVEX)

Liu et al., First IASI Conference Meeting, November 13-16, 2007, Anglet, France

Results from JAIVEX Campaign (April 19, 2007)

- Fine water vapor structures captured by the retrieval system
- NAST-I under flew over the CART ARM site
- A very cloudy sky condition

Lon. (deg.)

Lat. (deg.)

- Cross-section of retrieved ozone at ~ 16 km
- Plot is deviation from the mean
- High latitudes have higher ozone amounts than low latitudes
- Fine horizontal structure captured
- Can be correlated with T and H₂O

Comparison of IASI and NAST-I retrieved profiles with radiosondes

- Retrieved atmospheric
 Temperature and moisture
 profiles from IASI and NAST-I
- All parameters retrieved
 - T, H₂O, O₃,CO
 - Surface emissivty
 - Surface skin temperature
 - Cloud optical depth
 - Cloud height
 - Cloud particle size
- Good agreement between
 IASI and NAST-I
- Good agreement with radiosonde

Ts and cloud properties for April 29, 2007

- Retrieved surface skin temperature and cloud properties from IASI
- NAST-I under flew over the gulf of Mexico
- Relatively clear day
- Only drop sondes available from the UK aircraft

Results from JAIVEX Campaign (April 29, 2007)

- A movie showing 3-D atmospheric structures of T and H₂O
- NAST-I under flew over the gulf of Mexico
- Notice the fine moisture circulation pattern

Comparison of retrieved T & RH profiles with dropsondes for April 29, 2007

4

50

4

50

- Moisture profiles highly variable
- Changes on the scale of a few km
- PCRTM IASI retrieval can capture various H₂O layers
- Agreement should improve if careful footprint matching is done

Liu et al., First IASI Conference Meeting, November 13-16, 2007, Anglet, France

Spectral residuals and CO retrievals

300

- Red curve and blue curve in the top panel are IASI observed spectrum and PCRTM modeled spectrum
- Red curve in the bottom panel is the rms error
- Blue curve in the bottom panel is the IASI instrument noise converted to the brightness temperature unit (K) using the scene temperature shown in the upper panel
- 280 spectrum 240 F AST 180 500 wavenumber (cm⁻¹) 8 RMS Error 4 wavenumber (cm⁻¹) 280 spectrum 240 AST wavenumber 8 RMS Error 6

wavenumber (cm⁻¹)

 Notice that the feature near 2020-2250 cm⁻¹ are removed when CO profile is explicitly retrieved in the inversion algorithm

Comparison of IASI retrieved profiles with ECMWF

Examples PCRTM Retrieved land and ocean emissivities

- Soil (or quartz, or ?) + vegetation
 - → produce ARM CART site observed emissivity
- Retrieval is not sensitive to emissivity at frequencies where the IASI does not see the earth's surfaces
 - ightarrow 645-750 cm⁻¹, 1400-2000 cm⁻¹

- NAST-I retrieved sea Emissivity
 - \rightarrow On Sept. 9, 2004 near Italy
 - →Wind speed and scan angle dependencies included
- Retrieval is not sensitive to emissivity at frequencies where the IASI does not see the earth's surfaces
 - ightarrow 645-750 cm⁻¹, 1400-2000 cm⁻¹

Conclusions

- PCRTM is a physical based fast radiative model
 - Accurate relative to LBL
 - Very fast in speed
 - Cloud effect modeled (including multiple scattering)
 - Provides forward model and Jacobians in both spectral and EOF domain
- A Single FOV physical retrieval methodology has been developed
 - Small dimensions for both observation and state vectors
 - Retrieves all state vector simultaneously
 - Cloud parameters retrieved explicitly
 - No need for cloud clearing
 - High horizontal resolution relative to cloud clearing method
 - Converges quickly even from climatology first guess
 - Provide error covariance of retrieved parameters
- PCRTM retrieval method has been applied to IASI and NAST-I
 - Capturing high vertical and horizontal atmospheric structure
 - Coherent spatial field retrieved for all parameters
 - Compare well with radiosondes and ECMWF profiles
- Excellent IASI data
 - Provide atmospheric and surface properties
 - T, H₂O, O₃, CO, cloud O, cloud height and cloud effective size
 - Surface skin temperature and surface emissivities
 - Consistent with NAST-I retrievals
 - Agree well with radiosondes and drops sondes
- Application of PCRTM retrieval algorithm
 - Incorporate into 3D/4DVAR NWP system
 - Assimilate the PCRTM retrieved parameters in NWP system (error cov provided)