Validation of IASI level 1 and level 2 products using IASI-balloon

- C. Camy-Peyret, S. Payan, Y. Té, P. Jeseck, J. Bureau and I. Pépin / LPMAA
- D. Blumstein / CNES
- B. Tournier, D. Coppens, / Noveltis
 - Outline IASI-ballon Spectral calibration of IASI-balloon Flight IASI05 on Feb. 2007 from Esrange Radiometric calibration Geolocation and PTU soundings Retrievals Summary

IASI Conference, Nov. 13-16, 2007 - Anglet, France

IASI-balloon in support to IASI calibration and geophysical validation

Why IASI-balloon ?

1) A balloon-borne instrument with the IASI spectral coverage and similar (or better) performances in term of resolution and/or signal to noise is useful and important for the scientific preparation of the IASI mission. CNES has been supporting the development of this experiment within the IASI programme

2) IASI-balloon from a stratospheric gondola at 35 km has a similar observing geometry as IASI on MetOp (small atmospheric correction for the atmosphere between 35 km and MetOp altitude)

3) Test of instrument algorithms (radiometric calibration, non-linearity, ...)

4) Radiative transfer studies and validation of the spectroscopy of atmospheric constituents

5) Test of inversion algorithms

6) Validation campaigns during the commissioning phase of IASI/MetOp and other mid to long term validation and/or scientific campaigns

Objectives for the validation of IASI

- 1) In coincidence with an overpass of MetOp, use IASI-balloon and companion instruments on the same payload for validating level 1b spectra of IASI-MetOp :
 - spectral calibration
 - instrument line shape
 - radiometric calibration
- 2) Use the balloon spectra for validating level 2 products of EPS:
 - T and H_2O profiles
 - O_3 profiles
 - CO, CH_4 and N_2O columns
 - surface emissivity
 - clouds (IR imager)
- 3) Obtain auxiliary information from independent meteo and ozone sounding in the vicinity of the launching site and from ground based measurements

Method

- 1) For level 1B spectra in short loop with the TEC (Technical Expertise Centre) in CNES, Toulouse:
 - generate IASI-like spectra by degrading IASI-balloon spectra
 - compare them with IASI-MetOp
- 2) For level 2 products:
 - compare EPS products with retrievals from IASI-balloon and IASIlike spectra
 - use the same retrieval algorithms on standard IASI-MetOp level 1c spectra
- 3) Provide the best atmospheric state for the time/location of the balloonsatellite coincidence

IASI-balloon experiment

Mass : **456 kg**

Emission configuration : Infrared Atmospheric Sounding Interferometer-balloon (IASI-balloon)

IASI01	13 March 2001	Kiruna (Sweden)	Technological flight
IASI02	5 August 2002	Kiruna (Sweden)	SCIAMACHY validation
IASI03	30 June 2005	Teresina (Brazil)	Envisat validation REFIR (IFAC) on board
IASI04	1 March 2006	Kiruna (Sweden)	Rehearsal of IASI validation
IASI05	22 Feb. 2007	Kiruna (Sweden)	IASI MetOp validation
IASI06	May. 2008	Teresina (Brazil)	IASI MetOp validation mini-lidar + mini-DOAS on board

IASI-balloon characteristics

• Two detector output optics :

HgCdTe 600-2000 cm⁻¹

InSb 1900-3000 cm⁻¹

• Nominal OPD for emission measurements :

 $d = 10 \text{ cm} \rightarrow \text{apodised resolution} = 0.1 \text{ cm}^{-1}$

 $(d_{max} = 50 \text{ cm used in solar absorption})$

• Two onboard black body (BB) cavities

Warm BB 20°C nominal Cold BB -20°C nominal

(Their temperature can be adjusted during flight depending on the thermal

environment)

- Duty cycle : 1 min 25 s
 - 1 cold BB $\Delta \widetilde{v} = 1 \text{ cm}^{-1}$ 8 scans : 20 s1 scene $\Delta \widetilde{v} = 0.1 \text{ cm}^{-1}$ 8 scans : 55 s1 warm BB $\Delta \widetilde{v} = 1 \text{ cm}^{-1}$ 4 scans : 10 s
- IFOV = 0.9° (FWHM of Gaussian IPSF), possible pointing ± 25° within the nadir direction. Foot print ~ 600 m (depending on balloon altitude)
- 1 visible CCD imager (3 km \times 15 km) and 1 IR camera (3 km \times 15 km)

Optical head

Compensation of the gondola movement

Spectral calibration of the IASI-balloon spectra

Global spectral calibration of the IASI-balloon spectra

- Sampling of the interferogram using a stabilized He-Ne laser
- Spectral shift introduced by optical misalignment

- 10 lines of CO₂ [728 to 752 cm⁻¹] for the HgCdTe channel
- 5 lines of CO₂ [2050 to 2057 cm⁻¹] and 5 lines of CO [2150 and 2170 cm⁻¹] for the InSb channel

• Lines position in the IASI-balloon atmospheric spectra after interpolation

• Determination of the laser frequency shift $\Delta \tilde{v}_L$:

$$\Delta \widetilde{\mathcal{V}}_{L} = \widetilde{\mathcal{V}}_{L} \left(\frac{\widetilde{\mathcal{V}}_{obs} - \widetilde{\mathcal{V}}_{Hitran}}{\widetilde{\mathcal{V}}_{Hitran}} \right)$$

• After the spectral shift correction, a new verification with the same algorithm will give a new shift very close to zero

ANA : individual spectral calibration of the IASI-balloon spectra

Each individual spectrum (index n), is compared to a reference atmospheric spectrum y_0 obtained by a radiative transfer forward model using the best *a priori* atmospheric state

 \diamond Using this analytical method on 4 micro-windows for each channel HgCdTe or InSb (relatively narrow and non-saturated atmospheric lines) we determine a mean scaling factor for each spectrum ε_n

 \clubsuit After this individual spectral calibration, spectra are interpolated and resampled on a fixed wavenumber grid (step = 0.05 cm⁻¹)

The absolute wavenumber accuracy for generating IASI-like spectra, is about 3×10^{-6} (consistent with the specification of 2×10^{-6} for IASI-MetOp L1c spectra)

Spectral calibrated spectrum at IASI-MetOp resolution provided to the Technical Expertise Centre

Flight IASI05 from Esrange (Kiruna, Sweeden)

Date of the flight 22 Feb. 2007 Payload : IASI-balloon + infrared camera

Conditions : very cold, within the vortex

Footprints of IASI-MetOp and trajectory of IASI05 flight [1/2]

Footprints of IASI-MetOp and trajectory of IASI05 flight [1/2]

Radiometric calibration of the IASI-balloon spectra

Instrument problems occurred during IASI05

 Breakdown of the Thermalogic board which controls and stabilizes the two on board blackbody temperatures used for the radiometric calibration (during the preparation of the flight IASI05)

- Patch with a custom-made electronic board (temporary card) which reads the two blackbody temperatures (Pt100)
- The control of the temperatures was performed by the gondola housekeeping on board PC (CNES Nacelle Pointée)

♦ IASI05 flight in extremely cold conditions, the cooling system of the cold blackbody froze during flight ascent

- Use of another internal source of calibration in the limb view
- ♦ After return of the instrument at LPMAA in Ivry :
- Acquisition/installation of the new Thermalogic board for temperatures control

• Estimation of the temperature correction between the Thermalogic board and the temporary card

➢ But the first temperature dependence studies do not provide very satisfactory results

Using the IR camera temperatures [T_{IR}]

 $\$ Comparison of the brightness temperature T_B from the Thermacam and from the IASI-balloon spectra (flight IASI03)

Radiometric calibrated spectrum using T_{IR}

• Some disagreement between this spectrum and a forward model using a meteorological sounding (in the CO_2 saturated band)

- IASI05 flight in extremely cold conditions and in the vortex
- Different locations for the sounding and balloon position ?
- Missing atmosphere above the balloon

More studies should be carry out

Geo-location and PTU/O₃ soundings from Esrange

Retrievals of IASI-MetOp and IASI-balloon spectra: a case study

IASI-MetOp vs. IASI-like balloon measurements (simulation)

IASI Conference, Nov. 13-16, 2007 - Anglet, France

Location of the IASI-MetOp pixels used for LARA retrievals

Overpass 1 ~ 18:14 TU

22 Feb. 2007

Overpass 2 ~ 19:54 TU

IASI Conference, Nov. 13-16, 2007 - Anglet, France

IASI-MetOp retrieval for overpass 2 (preliminary)

IASI-MetOp retrieval for overpass 2 (preliminary)

IASI Conference, Nov. 13-16, 2007 - Anglet, France

IASI-MetOp retrieval for overpass 2 (preliminary)

Retrieved vmr at surface :

- CO₂ : 392 ± 5 ppmv
- CH₄ : 2.20 ± 0.28 ppmv
- N₂O : 374 ± 50 ppbv
- CO: 134 ± 70 ppbv

Cloud type from AVHRR (*)

IASI Conference, Nov. 13-16, 2007 - Anglet, France

IASI-balloon spectra and retrieval

IASI Conference, Nov. 13-16, 2007 - Anglet, France

1080

1080

Very good spatial and temporal coincidence of IASI-MetOp and IASI-balloon for 2 overpass on 22 Feb. 2007 during the flight IASI05

- IASI-balloon experienced onboard blackbody problems during IASI05
 - Spectral calibration at IASI-balloon resolution is OK (2 ×10⁻⁶)
 - Radiometric calibration of IASI-balloon spectra not better than 1K
- Retrievals of IASI-MetOp spectra for the best space/time coincidences produce satisfactory residuals and reasonable level 2 products.
- Retrieved IASI-MetOp spectra do not show significant spectral shift (a fitted parameter in LARA) at the level of 3x10⁻⁶
- Future work will include more refined analyses of scene inhomogeneities on IASI-MetOp retrievals using the IASI-balloon IR imager

- Team "Nacelles pointées" from CNES/CST in Toulouse (Jean Evrard)
- CNES balloon launching team and SSC Esrange teams
- CNES HQ "Etude et Observation de la Terre" through TOSCA

Backup slides

IASI validation planing

Instrument features supporting Cal/Val activities

- Raw interferograms transmitted to the ground (sampled : 1/408)
 Including continuous part of the signal (for NL correction)
- Synthesis of imaginary part of the on-board calibrated spectra
- Spectral Overlaps B1/B2, B2/B3 (under sampled : 1/120)
 - Direct comparison of the calibrated spectra measured by 2 different detectors
 - Spectral
 - Radiometric
- 2 Cold Space Calibration Views : CS1, CS2
- External Calibration Mode with Earth View Target
 - Spatial oversampling
 - Quasi-simultaneous measurement of the same scene by 2 different pixels
- IASI Integrated Imager (IIS)

Spectral calibration

IASI balloon spectrum 169 vs synthetic spectrum

Spectral calibration

IASI balloon spectrum 169 vs synthetic spectrum

