

IASI

ECMWF Biases

Radiative Transfer Models for IASI Variable CO₂

L. Larrabee Strow, Scott Hannon, Sergio DeSouza-Machado, and Breno Imbiriba

Atmospheric Spectroscopy Laboratory (ASL)
Physics Department
and the
Joint Center for Earth Systems Technology

University of Maryland Baltimore County (UMBC)

1 st IASI Conference, Anglet, France

November 14, 2007

Radiative Transfer for IASI: Comparisons to ECMWF

L. Strow

ICDS ECMWF Biase CO₂

- IASI Biases vs ECMWF (no sondes available yet)
- Poster: Compare AIRS vs IASI ECMWF biases for about 1 1/2 month time period of clear ocean scenes. Agreement better than 0.1K for mid-tropospheric channels.
- Here emphasize absolute comparisons to ECMWF, and
- Examine regions (upper trop) where some IASI and AIRS channels don't agree
- Variable CO_2 makes detailed comparisons to ECMWF difficult, so instead, use ECMWF to solve for CO_2 for lower-trop channels (in the 550 mbar range, most previous work in the 200-300 mbar range).

ACDS and ICDS: AIRS/IASI Cal/Climate Data Subsets

L. Strow

CDS

CMWF Biase

O₂

IASI

- ACDS being produced at GSFC/DAAC and is available to anyone. (This work uses similar subset produced at UMBC.)
- We have produced $\sim 1 \, 1/2$ months of ICDS.
- Plan to produce 1-2 years of ICDS in future.
- Use for calibration, radiative transfer studies, CO₂ retrievals
- Subset data into:
 - Clear (ocean/land)
 - 2 Small random selection of FOVs (nadir only)
 - ixed sites (ARM sites, Antarctica (Dome C), desert, etc.)
 - High convective clouds (Aumann, JPL) to record counts of
- coldest scenes
 Files sizes are ~200 Mbytes/day (AIRS)
- Ocean clear OK, land clear needs work
- Use IASI imager in clear algorithm, hope to use AVHRR vis for daytime clear in future.
- Subset algorithm only looks at uniformity, additional filters used for "clear" (to avoid stratus, for example).

IASI Cal/Climate Data Set: "Uniform" Fields

IASI

ECMWF Biase

AIRS Result: ECMWF Biases (\pm 40 deg) Tied to Sondes (as advertised)

IASI
L. Strow

ICDS

ECMWF Biases

CO₂

IASI Non-LTE Bias AIRS Non-LTE Algorithm Works at 9:30 am

IASI Bias and Std. Summary Clear FOVS, Ocean, Night

Now Add AIRS Biases

ECMWF SST stays the same, 9:30 am about 0.1K colder than 1:30 pm

IASI Shortwave Window Bias Also Smaller

High-Peaking CO₂ Channels IASI Biases Sometimes Much More Negative??

Quite Good IASI/AIRS Agreement to 2250 cm⁻¹

IASI Tropospheric CO₂ Biases:

Assuming 2 ppm/year CO_2 growth since 2002. Biases $\sim 0.25 K$ high

AIRS Biases with RS-90 ARM Mods CO₂ growth should add 4.5 × 2ppm/year × 0.03K/ppm = 0.27K

AIRS Biases with RS-90 ARM Mods Higher H₂O errors *may* just be ECMWF

AIRS Biases with RS-90 ARM Mods

 $\,$ V5 RTA Mods not done between 2275 and 2380 cm $^{-1}$, no ground truth

IASI Conclusions

L. Strow

ECMWF Biases

- AIRS versus IASI (double-diff) ~0.1K or less! (from poster)
- Biases very similar to AIRS
- AIRS-like RTA modifications derived from ARM RS-90 sondes should also improve IASI biases relative to ECMWF in CO₂ regions. Water regions uncertain, re-examine.
- Some issues in longwave, next to Q-branches and band edge. IASI biases lower than AIRS. No firm conclusions.
- CO₂ growth estimates needed to estimate biases. Or, use biases to estimate CO₂.

CO₂ with AIRS (and IASI)

IASI
L. Strow
CDS
CMWF Biase

- 4-years of AIRS CO₂
- Simple approach, easy to reprocess. Originally just after rates.
- Motivation
 - RTA validation
 - AIRS climate monitoring
 - CO₂ transport; help understand sinks? Use lower-peaking channels.
- CO₂ Jacobian centered around 550 mbar
- Start slow: Ocean/Night only clear FOVs; Good for validation, bad for sources/sinks and/or transport;
- ECMWF used for temperature tied to sondes.
- SST and TCW from AIRS (UMBC values, on a per FOV basis.)
- Validated via NOAA CMDL MBL, JAL, 2 ocean aircraft sites
- GOAL: provide useful data for modelers, show utility of lower-peaking AIRS channels

ASL

Mid-tropospheric CO₂ is Important!

IASI

L. Strow

ECMWF Biases

CO2

Weak Northern and Strong Tropical Land Carbon Uptake from Vertical Profiles of Atmospheric CO₂

Britton S. Stephens, "Kevin R. Gurney," Pieter P. Tans," Colm Sweeney, "Wouter Peters," Lord Bruhwler," Philippe Clais, "Michel Ramonet," Philippe Bousquet, "Stakelyn Bakazama," Shuji Aoki," Toshinobu Machida," Gen Inoue, "Nikolay Vinnichenko," † Jon Lloyd," Armin Jordan, "Martin Heimann," Olga Shibistova, "Say L. Langerleids, "L. Paul Steele, ¹² Roger J. Francey, "A. Sott Denning).

Measurements of midday vertical atmospheric CO, distributions reveal annual-mean vertical CO₂ distributions reveal annual-mean vertical CO₃ quidents that are inconsistent with atmospheric models that estimate a large transfer of testification from topical to northern latitudes. The finere models that most closely reproduce the observed annual-mean vertical CO₃ gradients estimate weaker northern update of 1.5 petagams of carbon per year (Fig. Cyear⁻¹) and weaker tropical entision of 4-0.1 Fig. Cyear⁻² compared with previous concessors estimates of 2-d and 4-1.0 Fig. Cyear⁻¹, prepertively. This suggests with previous concessors estimates of 2-d and 4-1.0 Fig. Cyear⁻¹, prepertively, This suggests who will be considered that the contraction of the contr

ur ability to diagnose the fate of anthropogenic carbon emissions depends critically on interpreting spatial and temporal gradients of atmospheric CO- concentrations (1). Studies using global atmospheric transport models to infer surface fluxes from boundary-layer CO2 concentration observations have generally estimated the northern mid-latitudes to be a sink of approximately 2 to 3.5 Pg C year (2-5). Analyses of surface ocean partial pressure of CO-(2), atmospheric carbon isotope (6), and atmospheric oxygen (7) measurements have further indicated that most of this northern sink must reside on land. Tropical fluxes are not well constrained by the atmospheric observing network. but global mass-balance requirements have led to estimates of strong (1 to 2 Pg C year"1) tropical carbon sources (4, 5). Attribution of the Northern Hemisphere terrestrial carbon sink (8-13) and

reconciliation of estimates of land-use carbon emissions and interferent carbon upside in the tropics (14-19) have motivated considerable research, but these litters remain quantitatively uncertain. The full range of results in a recent investmed companion study (5), and in independent studies (3, 20, 21), spans badgets with norther terminal inputs of 50 to 4 Pg Cy ser³, and trapical terrestrial emissions of -1 to 4 Pg Cy ser³. Here, we analyzed observations of the vertical destribution of CO₂ in the atmosphere that proting the contraction of the contraction of the contraction of corbon theres on the latherthal distribtion of exclore theres.

Previous inverse studies have used boundarylayer data almost exclusively. Flask samples from profiling aircraft have been collected and measured at a number of locations for up to several decades (22-24), but efforts to compile these observations from multiple institutions and to

compare them with predictions of global models have been limited. Figure 1 shows average vertical profiles of atmospheric CO2 derived from flask samples collected from aircraft during midday at 12 global locations (fig. S1), with records extending over periods from 4 to 27 years (table S1 and fig. S2) (25). These seasonal and annualmean profiles reflect the combined influences of surface fluxes and atmospheric mixing. During the summer in the Northern Hemisphere, midday atmospheric CO2 concentrations are generally lower near the surface than in the free troposphere, reflecting the greater impact of terrestrial photosynthesis over industrial emissions at this time. Sampling locations over or immediately downwind of continents show larger gradients than those over or downwind of ocean basins in response to stronger land-based fluxes, and higherlatitude locations show greater CO- drawdown at high altitude. Conversely, during the winter, respiration and fossil-fuel sources lead to elevated low-altitude atmospheric CO, concentrations at northern locations. The gradients are comparable in magnitude in both seasons, but the positive

National Center for Atmospheric Research, Boulder, CO 80305, USA. 2Department of Earth and Atmospheric Sciences, Purdue University, West Lafayette, IN 47907, USA. National Oceanic and Atmospheric Administration. Boulder l'Environnement, 91191 Gif sur Yvette, France. ⁵Center for Atmospheric and Oceanic Studies, Tohoku University, Sendai 980-8578. Japan. "National Institute for Environmental Studies, Onogawa, Tsukuba 305-8506, Japan, Graduate School of Environmental Studies, Nagoya University, Nagoya City 464-8601, Japan. ⁸Central Aerological Observatory, Dolgoprudny, 141700, Russia, 9School of Geography, University of Londs, West Yorkshire, LS2 91T, UK, 10 Max Planck Institute for Biogeochemistry, 07701 Jena, Germany. 11Sukachev Institute of Forest, Kraonoyank, 660036, Russia. 12Commonwealth Scientific and Industrial Research Organisation (CSIRO) Marine and Atmospheric Research, Aspendale, Victoria 3195, Australia, ⁵³Department of Atmospheric Science Colorado State University. Fort Collins. CD 80523. USA.

"To whom correspondence should be addressed. E-mail: stephens@ucar.edu †Deceased.

Methodology

L. Strow

IASI

ICDS ECMWF Biase CO₂

- Use ECMWF T(z), mean tied to radiosondes. Fit for SST and TCW using 2616 and 2609 cm⁻¹ channels (night only).
- Solve

$$BT_{i}^{obs} - BT_{i}^{calc}(ECMWF) = \frac{dB_{i}}{dCO_{2}}\delta CO_{2} + \frac{dB_{i}}{dT}\delta T_{s}$$

for δCO_2 using 2+ channels.

- LW: Two channels, 791.7 cm⁻¹ used for CO₂ and T_s ; 790.3 cm⁻¹ used for T_s only. Temperature insensitive.
- SW: 2392-2420 cm⁻¹; Temperature sensitive, 26 channels, diagnose ECMWF errors (~ 1 ppm jump on Feb. 2006)
- CO₂ zonally averaged into 4 degree latitude bins
- Main difference between this work, and previous work: Lower peaking CO_2 Jacobians.

This Work: 791 cm^{-1} Channel $dR/d(CO_2^i)$ Peaks Closer to Surface

Finding "Clean" CO₂ Channels

Ratio of dBT/dCO_2 to $dBT/dT_{profile}$ Why 791.7 cm⁻¹ Channel

Raw Biases, Northern Hemisphere Average

IASI

L. Strow

ICDS

ECMWF Biases

CO₂

AIRS Calibrated (1-number, 1-time) Using MLO

MLO at ~650 mbar, close to peak of CO₂ W.F.

L. Strow

ECMWF Biase

AIRS 4-Year CO₂ Climatology

ASI AIRS vs MBL; 25-50 Deg. Latitude

ASL JAL Comparisons: 30N - 15N Latitudes

IASI

ASL JAL Comparisons: 10N - 5S Latitudes

IASI

Validation of AIRS with MBL, JAL etc.

Comparison of AIRS and IASI CO₂ for May 2007

L. Strow

ICDS

ECMWF Biases

CO₂

AIRS Seasonal Amplitude vs MBL/JAL/etc.

AIRS vs MBL Min/Max Amplitudes

IASI

L. Strow

CDS

CMWF Biases

ASI AIRS Seasonal Phase vs MBL

AIRS vs MBL/MLO CO₂ Growth Rates

L. Strow
ICDS
ECMWF Biases

IASI

AIRS vs MBL Growth Rates: Offsets and Harmonic Terms Removed

Rate Variability 20-40 Deg.lat; AIRS=2.44, MBL=1.92 ppm/yr Blue Bars: AIRS=1.86, MBL=2.07 ppm/yr;

Red Bars: AIRS=2.56, MBL=2.88 ppm/yr

L. Strow
CDS
CMWF Biases

IASI

CO₂ Conclusions

IASI L. Strow

ICDS ECMWF Biase **CO₂**

- Excellent results using very clear FOVs over ocean
- Initial work shows similar results with cloud-cleared data, allowing more convective situations to be examined for transport
- Basic technique should work over land, first clear, then cloud-cleared data.
- This work sets a baseline on stability of AIRS (and eventually IASI), esp. with regard to trends.