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Radiative Transfer for IASI: Comparisons to

ECMWF

@ |IASI Biases vs ECMWF (no sondes available yet)

@ Poster: Compare AIRS vs IASI ECMWEF biases for about 1
1/2 month time period of clear ocean scenes. Agreement
better than 0.1K for mid-tropospheric channels.

@ Here emphasize absolute comparisons to ECMWF, and
@ Examine regions (upper trop) where some IASI and AIRS
channels don’t agree

@ Variable CO, makes detailed comparisons to ECMWF
di Ccult, so instead, use ECMWF to solve for CO, for
lower-trop channels (in the 550 mbar range, most
previous work in the 200-300 mbar range).



ACDS and ICDS: AIRS/IASI Cal/Climate Data

Subsets

@ ACDS being produced at GSFC/DAAC and is available to anyone.
(This work uses similar subset produced at UMBC.)

We have produced [171/2 months of ICDS.
Plan to produce 1-2 years of ICDS in future.

°
°
@ Use for calibration, radiative transfer studies, CO> retrievals
@ Subset data into:
© Clear (ocean/land)
@ small random selection of FOVs (nadir only)
© ixed sites (ARM sites, Antarctica (Dome C), desert, etc.)
@ High convective clouds (Aumann, JPL) to record counts of
coldest scenes
@ Files sizes are [200 Mbytes/day (AIRS)
@ Ocean clear OK, land clear needs work

@ Use IASI imager in clear algorithm, hope to use AVHRR vis for
daytime clear in future.

@ Subset algorithm only looks at uniformity, additional filters used
for “clear” (to avoid stratus, for example).



IASI Cal/Climate Data Set: “Uniform” Fields

ICDS: 20070531
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AIRS Result: ECMWEF Biases (x 40 deg) Tied to
Sondes (as advertised)

ECMWF Biases
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IASI Non-LTE Bias

AIRS Non-LTE Algorithm Works at 9:30 am
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IASI Bias and Std. Summary
Clear FOVS, Ocean, Night

ECMWF Biases

B i

(e dh

O-C or Std (K)

E—
——

1 i i i 1
800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800

Wavenumber (cm'1)



Now Add AIRS Biases

ECMWE SST stays the same, 9:30 am about 0.1K colder than 1:30 pm
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IASI Shortwave Window Bias Also Smaller

ECMWF Biases
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High-Peaking CO, Channels

IASI Biases Sometimes Much More Negative??
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Quite Good IASI/AIRS Agreement to 2250 cm™*
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IASI Tropospheric CO, Biases:
Assuming 2 ppm/year CO, growth since 2002. Biases [0.25K high

ECMWF Biases
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AIRS Biases with RS-90 ARM Mods
CO, growth should add 4.5 x 2ppm/year %< 0.03K/ppm = 0.27K
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AIRS Biases with RS-90 ARM Mods

Higher H,O errors may just be ECMWF

ECMWF Biases
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AIRS Biases with RS-90 ARM Mods

V5 RTA Mods not done between 2275 and 2380 cm™*, no ground truth

ECMWF Biases
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IASI Conclusions

@ AIRS versus IASI (double-di [ TO1K or less! (from poster)
@ Biases very similar to AIRS
ECMWF Biases @ AIRS-like RTA modifications derived from ARM RS-90

sondes should also improve IASI biases relative to ECMWF
in CO, regions. Water regions uncertain, re-examine.

@ Some issues in longwave, next to Q-branches and band
edge. IASI biases lower than AIRS. No firm conclusions.

@ CO; growth estimates needed to estimate biases. Or, use
biases to estimate CO».



CO, with AIRS (and IASI)

@ 4-years of AIRS CO,

@ Simple approach, easy to reprocess. Originally just after

rates.
Motivation
o RTA validation
@ AIRS climate monitoring
e CO; transport; help understand sinks? Use lower-peaking
channels.

@ CO» Jacobian centered around 550 mbar

Start slow: Ocean/Night only clear FOVs; Good for
validation, bad for sources/sinks and/or transport;

ECMWF used for temperature - tied to sondes.
SST and TCW from AIRS (UMBC values, on a per FOV basis.)
Validated via NOAA CMDL MBL, JAL, 2 ocean aircraft sites

GOAL: provide useful data for modelers, show utility of
lower-peaking AIRS channels



Mid-tropospheric CO- is Important!
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Measurements of midday vertical atmospheric CO, distributions reveal annual-mean vertical CO
gradients that are inconsistent with atmospheric models that estimate a large transfer of terrestrial
carbon from tropical to northern latitudes. The three models that most closely reproduce the

observed annual-mean vertical CO, gradients estimate weaker northern uptake of ~1.5 petagrams

of carbon per year (Pg C year ) and weaker tropical emission of +0.1 Pg C year
2.4 and +1.8 Pg C year

with previous consensus estimates of

compared

3, respectively. This suggests

that northern terrestrial uptake of industrial CO, emissions plays a smaller role than previously
thought and that, after subtracting land-use emissions, tropical ecosystems may currently be

strong sinks for CO,

ur abilty to diagnose the fate of anthro-
Omm aon misionsdepends it
ally o ixring sl and ol
gradients of atmospheric CO, concentrations (1)
tudies using elobal moephmc transport mod-
s to inf s from boundary
O concenttion obsrvations have generally
estimated the northern mic-latitudes to be a sink
of approximately 2 to 3.5 Pg C year ' (2.5)
Analyses of surfice ocean pamal presre of O,
() atmospheric (@), and atmo-
pheric oxygen () measuements have furhr
indicated that most of this northern sink must
ide on land. Tropical fluxes are not well con-
strained by the atmospheric observing network,
but global mass-balance requirements have led to
estimates of strong (1 to 2 Pg C year ') tropical
carbon sources (4, 5). Attribution of the Norths
Hemisphere terresirial carbon sink ($-/3) and

reconciliation of estimates of land-use carbon

14-19) have motivated considerable re-

search, but these fluxes remain quantitatively un-

certain. The full range of results ina recent inverse

model comparison study (5). and in independent
3.

1), spans budges with northem

20,2

{arestial uptake of 0.5 0 4 P C year ', and op-
ical terrstrial emissions of -1 to +4 Pg C year
Here, we analyzed observations of the vertical
distrbution of CO in the atmosphere that pro-
vide new constraints on the latitudinal distribu-
tion of carbon i
Previous inverse studies have used boundary-
layer data almost exclusively. Flask samples from
profiling aircraft have been collected and mea-
aredats mlmlvu offcaions for p o severl
s (2 efforts to compile these:
fom mumy\lc insttutions and o

ommmm.

‘compare them with predictions of global models
have been limited. Figure | shows average ver-
tical profiles of atmospheric CO, derived from
flask samples collected from aircraft during mid-
day at 12 global locations (fig. S1), with records
extending over periods fiom 4 to 27 years (table.
S1 and fig. 52) (25). These seasonal and annual-
‘mean profiles reflect the combined influences of
surface fluxes and atmospheric mixing. During
the summer in the Northern Hemisphere, midday
atmospheric CO; concentrations aregenerally.
lower near the surface than in the fiee tropo-
sphere, reflecting the greater impact of terrsirial
al emissions at this

downwind of continents show larger gradients
than those over or downwind of ocean basins in
response tostronger land-based fluxes, and higher-
e ocaionssho gretr COx dravdon a1
high altitude. Conversely, during the winter

piraion and ose el sourees fad 1 clevaed
low-altitude atmospheric CO; concentrations at
norther locations. The gradients are comparable.
in magnitude in both seasons, but the positive
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Methodology

Use ECMWF T (z), mean tied to radiosondes. Fit for SST
and TCW using 2616 and 2609 cm™2 channels (night only).

@ Solve

B; B;
dB 3CO, + LeSTS

BTPS — BT (ECMWF) =
: i ) dCO, dT

for 8CO5 using 2+ channels.

@ LW: Two channels, 791.7 cm™?! used for CO, and Ts; 790.3
cm™t used for Ts only. Temperature insensitive.

@ SW: 2392-2420 cm™; Temperature sensitive, 26 channels,
diagnose ECMWF errors ( [Ilppm jump on Feb. 2006)

@ CO3 zonally averaged into 4 degree latitude bins

@ Main di Cerknce between this work, and previous work:
Lower peaking CO, Jacobians.



This Work: 791 cm~! Channel dR/d(CO.)

Peaks Closer to Surface

Crevoisier et. al,,
Engelen and McNally
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Finding “Clean” CO, Channels
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Ratio of dBT /dco, to dBT /dTprofile

Why 791.7 cm™! Channel
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Raw Biases, Northern Hemisphere Average




AIRS Calibrated (1-number, 1-time) Using MLO

MLO at [690 mbar, close to peak of CO> W.F.
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AIRS 4-Year CO, Climatology

Latitude
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Validation of AIRS with MBL, JAL etc.

Detrended 002 (ppm)
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Comparison of AIRS and IASI CO, for May 2007
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AIRS Seasonal Amplitude vs MBL/JAL/etc.
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AIRS vs MBL Min/Max Amplitudes
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AIRS Seasonal Phase vs MBL
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AIRS vs MBL/MLO CO, Growth Rates
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AIRS vs MBL Growth Rates: O [sélts and
Harmonic Terms Removed
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Rate Variability 20-40 Deg.lat; AIRS=2.44, MBL=1.92 ppm/yr
Blue Bars: AIRS=1.86, MBL=2.07 ppm/yr;
Red Bars: AIRS=2.56, MBL=2.88 ppm/yr
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CO, Conclusions

@ Excellent results using very clear FOVs over ocean
@ Initial work shows similar results with cloud-cleared data,
allowing more convective situations to be examined for

transport
@ Basic technique should work over land, first clear, then
cloud-cleared data.

@ This work sets a baseline on stability of AIRS (and
eventually IASI), esp. with regard to trends.
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