Monitoring and Assimilation of IASI Radiances at ECMWF

Andrew Collard and Tony McNally ECMWF

Overview

- Introduction
- Assimilation Configuration
- IASI First Guess Departures
- IASI Forecast Impacts
- The Future
- Conclusions

Introduction

IASI Timeline

19th Oct. 2006 MetOp Launch

8th Feb. 2007 First individual orbits available to NWP centres

27th Feb. 2007 NRT distribution of data to NWP centres via

EUMETCAST

2nd Apr. 2007 Major modification to Level-1c processing at

EUMETSAT

12th June 2007 IASI assimilated operationally at ECMWF

18th Jul. 2007 EUMETSAT declare IASI operational

Assimilation Configuration

Current Operational Configurations

AIRS

- Operational at ECMWF since October 2003
- 324 Channels Received in NRT
- One FOV in Nine
- Up to 155 channels may be assimilated (CO₂ and H₂O bands)

IASI

- Operational at ECMWF since 12th June 2007
- 8461 Channels Received in NRT
- All FOVS received; Only 1-in-4 used (FOV 1)
- 366 Channels Routinely Monitored
- Up to 168 channels may be assimilated (CO₂ band only)

Assimilation Configuration: Channel Selection

Why Select Channels?

- The volume of IASI data available is such that we do not have the computational resources to simulate and assimilate all these data in an operational timeframe
- Not all channels are of equal use when assimilated into an NWP system
- We choose channels that we wish to monitor (often with a view to future use)
- We choose a subset of these channels which we actively assimilate

IASI Channel Selection

- All IASI channels are distributed to European Users via EUMETCAST. Distribution of IASI radiances via GTS is for 300 channels chosen according to Collard (2007).
- At ECMWF, for IASI we use the 300 channels above plus a further 66 channels.
- These are the channels that are routinely monitored not all are actively assimilated.

Collard (2007) ECMWF Technical Memorandum 532

Selected Channels (2)

Comparison of Actively Assimilated Channels (1)

Comparison of Actively Assimilated Channels (2)

Jacobians of 15µm CO₂ Band

1st IASI Conference, Anglet, France. 13th November 2007

Assimilation Configuration: Cloud Detection

Cloud detection scheme for Advanced Sounders

A non-linear pattern recognition algorithm is applied to departures of the observed radiance spectra from a computed clear-sky background spectra.

Vertically ranked channel index

This identifies the characteristic signal of cloud in the data and allows contaminated channels to be rejected

temperature jacobian (K)

Number of Clear Channels

1st IASI Conference, Anglet, France. 13th November 2007

Cloud Detection Software is Available

- Cloud detection has been re-written to allow greater portability and to allow cloud detection of IASI
- It is available for all to use from the NWPSAF.
- http://www.metoffice.gov.uk/research/interproj/nwpsaf/

Evolution of Bias Correction

IASI First Guess Departures

Looking at First Guess Departures

- Observed Radiances minus Radiances Predicted from Short Range Forecast from Previous Cycle
- First Guess Departures drive the increments

In the following slides:

- Clear-sky first guess departures
- The cloud detection uses the operational bias-correction
- The first-guess departures are NOT bias-corrected

First Guess Departure Standard Deviations and Biases in the Longwave Window

First-Guess Departure Biases in Water Band

IASI Forecast Impacts

IASI Forecast Scores: 500 hPa Geopot. AC

control normalised evic minus evag Anomaly correlation forecast N.hem Lat 20.0 to 90.0 Lon -180.0 to 180.0 Date: 20070308 COUTC to 20070806 COUTC 600hPa Geopotantial COUTC

control normalised evio minus eving Anomaly correlation forecast Shem Lat -80,0 to -20,0 Lon -180,0 to 180,0 Date: 20070308 00UTC to 20070805 00UTC 600hPa Geopotantial 00UTC

1st IASI Conference, Anglet, France. 13th November 2007

Map of RMS Forecast Error Differences 3-Day 500 hPa Geopotential Height (m)

3rd March-16th May 2007

Better

Next Steps and Conclusions

Next Steps

- Use the water vapour band
- Use over land
- Review assumed observation errors
- Cloud affected radiances
- Use of compressed data

Conclusions

- IASI is performing as expected
- The initial ECMWF implementation has focussed on the areas most likely to give positive impact (based on AIRS experience)
- IASI is providing positive impact on forecast scores – even using a system where AIRS is already used

