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INTRODUCTION

» Contemporary and future ultraspectral sounders (e.g. , IASI, ) and hyperspectral imagers
(e.0. ) provide high spectral and spatial resolutions for improved weather/climate forecast and
geographic information.

» Given the unprecedented volumes of three-dimensional data generated by these advanced sensors, the
use of robust data compression techniques will be beneficial for data transmission and archiving.

> In support of the NOAA next-generation GOES data processing, UW SSEC/CIMSS developed
various 2D/ 3D lossless compression methods and data preprocessing schemes applied to the
AVIRIS, AIRS, IASI, and GIFTS data.
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ABSTRACT

A simulation study is used to demonstrate the application of principal component
analysis to both the compression of, and meteorological parameter retrieval
from, high-resolution infrared spectra. The study discusses the fundamental
aspects of spectral correlation, distributions, and noise; the correlation between
principal components (PCs) and atmospheric-level temperature and water vapor;
and how an optimal subset of PCs is selected so a good compression ratio and
high retrieval accuracy are obtained.

under certain conditions are shown to provide 1) nearly
full spectral information with little degradation, 2) noise reduction, 3) data
compression with a compression ratio of approximately 15, and 4) tolerable loss
of accuracy in temperature and water vapor retrieval. The techniques will
therefore be valuable tools for data compression and the accurate retrieval of
meteorological parameters from new-generation satellite instruments.
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AIRS ULTRASPECTRAL GRATING DATA COMPRESSION

10 selected NASA AIRS digital counts granules on March 2, 2004
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) * Scan Period: 2.667 5

Direction  ° Ground Footprints: 90/Scan

of Flight

* Each granule consists of
2378 channels with 135 scan
lines containing 90 cross-
track footprints per scan line.
» Test data publicly available
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(ftp://ftp.ssec.wisc.edu/pub/bormin/Count)



AIRS digital counts at 800.01cm-! for the 10 selected granules
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Bias-Adjusted Reordering (BAR) Preprocessing Scheme

s Ultraspectral sounder data features strong
correlations in disjoint spectral affected by the
same type of absorbing gases at various altitudes

= The Bias-Adjusted Reordering (BAR)
preprocessing scheme is used for exploring the
correlation among remote disjoint channels

= This preprocessing technigue aims to improve
the compression ratio of any existing scheme



The BAR Scheme (patent application pending)

Given the i-th reordered vector\/' , we are seeking/™ and b*,

the minimum norm solution of min £'(V,b),

VeS
bell

where the cost function is '(v,b)=|V' -V —b H2 = i(v; —v, —b)?
k=1

Then the (i+1)-th reordered vector is simply V'™ =V"+b’

b

The optimal value of b* is obtained by & 'a(\k’)’b) _0, which yields
=
b" 1 «
b == (7 —v,) = (V) — (V)
n, o

For lossless compression, Is rounded to the nearest integer [b*]
and the (i+1)-th reordered vector becomes
Vil =V + [b*]



CIMSS-DEVELOPED DATA
PREPROCESSING SCHEME

CIMSS’s Bias-Adjusted Reordering (BAR) data preprocessing scheme
(Huang et al. 2004) improves the performance of existing state-of-the-art
compression methods (2D CALIC, 2D JPEG-LS, 2D JPEG2000 (Part 1),
3D JPEG2000 (Part 2))
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CIMSS-DEVELOPED NEW LOSSLESS
COMPRESSION METHODS

. Lossless PCA (Huang et al. 2004)

 Predictive Partitioned Vector Quantization (PPVQ)
(Huang et al. 2004)

 Fast Precomputed Vector Quantization (FPVQ) with
optimal bit allocation (Huang et al. 2005)
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Compression Ratio




Comparison of CIMSS-DEVELOPED NEW LOSSLESS Performance

Compression Ratio

Conpression Ratio

with the EXISTING metheds (AIRS Data)
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GIFTS ULTRASPECTRAL INTERFEROMETER DATA COMPRESSION

GIFTS Water Vapor Tracer Winds for Hurricane Bonnie (August 26, 1998)

Geostationary Imaging Fourier Transform Spectrometer (GIFTS)

GIFTS
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5 GIFTS uplooking interferometer dataset collected on
13 Sept. 2006 by SDL, Utah State Univ. for compression study

eEach GIFTS dataset consists of

elongwave , each with 1031
points;
<128 x 128 spatial samples (33.8 MB), and

emidwave/shortwave , each
with 2062 points; 128 x 128 spatial samples
(67.6MB)



Lossless Compression of GIETS Data

s Predictive Partitioned Vector Quantization (PPVQ)
scheme consists of 4 steps

e | inear Prediction

e Channel Partitioning

o [Faster Vector Quantization
e Entropy Coding



Predictive Partitioned \ector
Quantization (PPVO)

Linear Prediction
e Reduce dynamic range by knowledge of previous channels

Channel Partitioning
e Group channels with same bit depths together

Faster Vector Quantization

Unlike Linde-Buzo-Gray (LBG) algorithm, the codebook design
IS not done by the splitting method.

Entropy Coding

e Compress VQ indices, codebook, and VQ residual close to their
optimal entropy bound



Compression Ratio Result (GIETS DATA)

3D JPEG CCS[fS
GIFTS 2000 IDC | CCSDS-
Data | JPEG200 | JPEG- (Part /7 IDC
No. 0 LS 2) M 5/3
1 3.90 4.08 4.11 3.21 3.13 4.71
2 3.92 4.10 4.12 3.22 3.13 4.74
3 3.87 4.04 4.06 3.19 3.11 4.49
4 3.87 4.04 4.08 3.20 3.12 4.67
5 3.83 4.00 4.05 3.16 3.09 4.62
Avg CR 3.88 4.05 4.08 3.20 3.12 4.65

mPPVQ takes about several minutes to compress one huge GIFTS dataset on an AMD Opteron PC
for ground data processing purposes (i.e. rebroadcast or archiving).
mThe current code is written in Matlab and C/C** mixed.



Comparison of CIMSS-DEVELOPED NEW LOSSLESS
Performance with the EXISTING methods (GIFTS Data)
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AVIRIS HYPERSPECTRAL IMAGER DATA COMPRESSION

® NASA JPL AVIRIS hyperspectral imager has 224 bands with wavelengths from 400 to 2500 nanometers (nm)
® The following AVIRIS test dataset has been widely used in the IEEE/SPIE compression society for decades

FQL_JPrite . e __ _______Moffet Field

Cy (N

Lunar Lake




CIMSS’s LAIS-LUT method (Huang et al. 2006) pushes lossless
compression of the AVIRIS hyperspectral imagery data to a new
high with an average compression ratio of 3.47

Method Cuprite Jasper Ridge Lunar Lake Moftat Field | Average
2D-CALIC 2.24 2.04 242 2.39 2.26
LCL-3D 291 2.81 2.94 2.77 2.86
Dif. JPEG-LS 291 2.81 2.93 2.84 2.87
ASAP 297 2.87 3.10 3.08 3.00
ACAP 297 2.88 3.11 3.10 3.01
3D-CALIC 297 2.98 3.01 3.17 3.04
SLSQ 3.15 3.15 3.15 3.14 3.15
M-CALIC 3.14 3.06 3.19 3.27 3.16
SLSQ-HEU 3.23 3.22 3.22 3.20 3.22
LUT 3.44 3.23 3.40 3.17 3.31
LAIS-LUT 3.58 3.42 3.53 3.36 3.47




TOWARDS ERROR RESILIENCE IN SATELLITE
“NOISY" TRANSMISSION

CIMSS’s 3D Wavelet — Reversible Variable Length Coding (SDWT-RVLC)
method (Huang et al. 2005) yields significantly better error resilience than
3D JPEG2000.
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DSP IMPLEMENTATION FOR REAL-TIME SATELLITE REBROADCAST

TMS320C6416 DSP board TMS320C6416 two-level cache-based architecture
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TOWARD REAL-TIME SATELLITE ONBOARD COMPRESSION

« CIMSS’s fast linear-time minimum-redundancy prefix coding (Huang et al.
2007) yields a theoretically superior compression gain and faster
execution time than the CCSDS’s Rice coding.

= The Rice coding Is optimal only when the input data is of geometric distribution,
whereas the prefix coding is optimal for any data distribution.
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TOWARD

IMPLEMENTATION OF

THE LINEAR-TIME MIMIMUM-REDUNDANCE PREEIX CODING
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Module 1: Frequency Table Builder Module 2: Codeword Length Table Builder

Module 4: Data-to-Codeword Mapper
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Toward the VL. ST design of the Fast Radiative Transfer Model:
Implementation of the Exponential Function in VHDL

Bormin Huang, Jianlong Zhang, and Allen Huang
Space Science and Engineering Center
University of Wisconson-Madison

1. In the era of hyperspectral sounders, the efficient computation of the radiative transfer model is
desired.

2. The fast radiative transfer model is very suitable for the FPGA implementation to take advantage
of the hardware's efficiency and parallelism. where radiances of many channels can be calculated in

parallel in FPGA.

3. The success of the VLSI implementation of the fast radiative transfer model relies on the VLSI

design of the exponential function for use in the transmittance calculation:
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4. An efficient approximate exponential function for VHDL implementation is developed by adopting
Tang's algorithim with some simplifications:

Slead ©j2»
Calculate N N1, N2 m._j Look up table by j e =" *(Sfec‘d(;}) + Sng,;j‘(;’}...l,&’?,_-].* },(;;-)’}-

-

Calculate r1. Calculate p Crl

Exponential function implementation
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6. WNumerical evaluation of the VHDL. implementation of the exponential function:
(Higher accuracy is achiewvable. if needed. by reducing the simplifications in the exponential function.)

Input data
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Matlab
simulation

Matlab
simulation.

-
%o

NVHDL
simmulation

SVHDL

simulation %o

4.4817

4. 4973

0.3481%%

4. 4976

0.3548%0

27183

27217

0.1251%%0

27218

1288%0

54.598

54.545

0.0971%0

54.552

.0843%0

20.086

20.1806

0.4979%%

20.188

.5078%

7.389

7.389

0%o

7.389

.649

[

649

0%o

[

649

284

0.4673%

.586

1933%0

935

05172

391

9

.1438%

9

= =B e

127

b | | [ )| e

6211%0

| = B =

8869

.B871

0226%0

8871

0226%0

TT88

7801

1669%0

7301

l669%0

T189

7178

153020

T177

1669%0

5169

5128

T7932%%0

5128

7932%0

3867

.3869

.0517%%6

3869

0517%0

1353

1346

olo|o|ole|o|o|o|e|e

5174%6

1346

olo|o|e|e|elole|o|e|e

.5174%%

0498

0497

0.2008%%

0497

0.2008%0

0183

0184

0.5464%

0184

0.5464%0

0
0.
0.
0
0
0
0
0
0

0067

olo|ole|e|o|e|olo

0067

0%

ololo|o|o|ololo|o

0067

02

- Execution time
For one single exponential calculation. Matlab's built-in C code takes 3.5*10* seconds at the high-end AMD Opteron 2.4
Gz CPU., whereas the estimated Xilinx Virtex FPGA (mmodel: x4v1lx100) takes 3%10° seconds. The FPGA is —10x
faster!
For implementation of 10 exponential calculations in parallel in one Xilinx Virtex FPGA (model x4vix100). it is ~100x
faster!!
For parallel implementation of four such FPGASs. it 1s —400x faster!!
The bottom line: hardware parallelisin is mmuch more efficient than software parallelisin.

7. Used resource for Xilinx Virtex FPGA x4vIix100:
Number of Slices: 1245 out of
Number of Slice Flip Flops: 596 out of
Number of 4-input LUTs: 2247 out of
Number of DSP48s: 3 out of




SUMMARY

» This talk presents the current status of lossless compression of
ultraspectral sounder and hyperspectral imager data that
have been conducted since 2004 at the Cooperative Institute
of Meteorological Satellite Studies (CIMSS), the University of
Wisconsin-Madison.

» Besides the new algorithm development CIMSS is actively
working toward the DSP/FPGA/NHDL implementation.

» So far a book chapter & more than 50 papers are published

» Several compression schemes/methods are under
consideration for patent applications

» CIMSS is looking forward to conducting IASI compression
and is in need of IASI raw data counts.



SUMMARY" =

» New IASI initiative also includes
»Development of a novel retrieval
capability for advanced sounder
= To develop innovative retrieval algorithms

for the enhanced use of clear and cloudy
1ASI radiances

= To demonstrate the ultimate 1ASI
sounding capability that is not limited by
the traditional inverse approaches.
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Useful Links
[For references, datasets, publications, & software

CIMSS Satellite Data Compression Web site:
http://math.ssec.wisc.edu/compression/

CCSDS Web site:

Per CCSDS’s request, CIMSS sent in 20+
published papers for their posting at the
CCSDS web site: http://www.ccsds.org/


http://math.ssec.wisc.edu/compression/
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ach year, the Remote Sensing Program showcases the latest
nformation on present and planned Earth observing systems,

data acquisition and processing, and scientific applications. To
facilitate in-depth presentations and conversations covering a variety
of topics, the program consists of eleven separate conferences.

n the spirit of fostering interdisciplinary collaboration, attendees
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provide an official setting to discuss a wide range of remote sensing
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wWith the advances in contemporary and future active and
passive sensor techneology with high spectral and/or
spatial resolutions, more powerful airborne and space-
borne instruments are being developed for remote sensing
of the atmosphere, oceans, lands of Earth and other
planets. Their finer resolution and faster scanning result in
significant data volume increases. These increases present
challenges to data transmission and archiving; particularly
for satellites with limited access to a growing congested
radio frequency (RF) spectrum. Data compression
techniques provide reduced data volume for effective data
transfer within the limited satellite RF spectrum, while
reducing the cost of data transfer and storage. Satellite
data communications techniques facilitate data
transmission in the wireless error-prone channels.

This conference provides an interdisciplinary forum for
exchanging the latest research results and views on the
current work in the areas of satellite data compression
and communication. The advances in satellite data
compression have been influenced by the progress and
knowledge in generic 2D and 3D image and video coding
techniques. Research in these areas is also welcome in
hope to inspire the scientists in satellite data compression.
This conference also extends its interests to data
processing techniques to reduce, improve or extract the
noisy data via onboard pre-processing or onsite post-
processing. Topics of interest include but are not limited
to:

Data Compression

Ultraspectral, hyperspectral and multispectral data
compression, generic 2D image and 3D video coding,
lossless, near-lossless, and lossy compression,
computationally efficient lossless compression , error-
resilient compression, applications of compression to
geophysical product retrieval, compression-based anomaly
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quantization, wavelet compression, multiwavelet
compression, fractal compression, entropy coding,
multiple description coding, error control, bit-rate
allocation, compression of geographic information systems
(G1Is), active sensor data compression, interferogram data
compression, grating data compression, radar and lidar
data compression, space data compression, other topics
related to data compression.

Data Communication

Channel coding, source coding, advanced modulations,
error-correction coding, restricted radio frequency (RF)
spectrum, telemetry systems, telecommand systems,
space link protocol, link analysis, transmission techniques,
multiple access, satellite networks, multibeam satellites,
communication payload, wireless communication,
applications of Europe's DVB satellite standard, application
of CCSDS modulation and coding, application of the
CCSDS 4D-8PSK-TCM modulation by space agencies,
controlling out-of-band emissions. All of these issues
relate to how much data can be transmitted.

Data Processing

Filter design, digital filters, data reduction, sampling and
quantization, data archiving, data indexing, image
registration, image restoration , image interpolation, data
recovery, image restoration, destriping, bowtie correction,
data calibration, data correction, data enhancement, noise
filtering, analog and digital signal processing, statistical
signal processing, adaptive signal processing, geometric
transformation, image stabilization, color correction,
brightness and contrast adjustment, data representation
and transforms, super-resolution, multi-resolution
processing and wawvelets, motion analysis & tracking,
feature extraction, morphological image processing,
neural networks, fuzzy processing, data format, content-
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