

IASI FM2 Commissioning on METOP-A

Level 1 Cal/Val Description

IASI L1 Cal/Val Team

Outline

- Introduction
- Overview of the IASI key performances
- Level 1 Cal/Val Plan
- IASI modes of operations
- Overview of the processing
- Parameters updates during Cal/Val

Introduction

Metop-A launch	19 th of Oct 2006
----------------------------------	------------------------------

 IASI first interferograms 	27 th of Nov 2006
---	------------------------------

- 29th of Nov 2006 IASI first spectra computed on-board
 - L1 spectra (calibrated on ground)
- IASI data trial dissemination in Near Real Time 24 of May 2007
- IASI radiances Operational at ECMWF
 - Medium Range Numerical Weather Forecast
- IASI data operational dissemination in NRT

29th of Nov 2006

12th of June 2007

19th of July 2007

The teams

CNES teams

- Cal/Val & TEC teams
 - > B.Tournier, F.Cayla, R.Fjortoft, T.Phulpin, C.Buil, D.Coppens, D.Blumstein
 - I.Gaudel, C.Baque, R. Bach, D. Saïd
- Balloons team

Partnerships

- LPMAA : C.Camy-Peyret et al.
- METEO FRANCE CMS Lannion: L.Lavanant, P.Brunel
- ECMWF : A.Collard, T.McNally
- UK MetOffice : F.Hilton
- The instrument is operated by EUMETSAT Team in Darmstadt

Main Performances

- IASI sounder: 4 pixels, 3 bands
 - > 12 detection chains
 - Must be perfectly registered, calibrated and intercalibrated

Radiometry

- Noise
- Calibration : absolute, stability
- Spectral
 - Calibration : absolute, stability
 - Spectral Response Function
- Geometry
 - Location
 - Point Spread Function

First IASI Level 1C Spectra

Generated by the IASI L1 PPF and Cal/Val Facility

==> contribute to the accuracy of the "forward" model

Overview of main performance specifications

Radiometry

- Noise
 - > 0.28 Kelvin : at instrument level,
 - > 0.2 Kelvin : L1C products (apodised spectra)
- Calibration:
 - > 0.5 Kelvin : absolute
 - > 0.15 K : orbital stability, 0.15 K long term stability
 - > 0.1 K : intercalibration (pixels, viewing angle, spectral channels)

Spectral

- Calibration : relative error $dv/v < 2 \cdot 10^{-6}$
- Spectral Response Function

Geometry

- Location : relative to AVHRR products (0.3 pixels, around 0.3 km)
- Point Spread Function
 - Uniformity
- First IASI Conference November, 13-16 2007, Anglet France

IASI Level 1 Cal/Val Plan

- The IASI L1 CalVal Plan describes the process, methods and data
 - To obtain the ultimate performances of Level 1 IASI products (calibration),
 - To demonstrate these performances (validation) during flight operations
- General goal of the Level 1 Cal/Val activities is to ensure that
 - after the commissioning and thereafter during the mission lifetime,
 - the IASI Level 1 products are compliant with their specifications
 - · radiometric, spectral and geometric performances
- In-flight Cal/Val activities broken in 3 successive phases
 - Accuracy of the validation and diversity of the conditions in which the validations are performed increase with time
 - · Phase A (2 K), Phase B and C (0.5 K) typically
 - Type of reference measurements and their accuracy evolve accordingly
 - · stand alone IASI measurements
 - · comparison with other spaceborne instruments
 - · meteorological soundings and dedicated correlative measurements

Cal/Val Planning

Metop-A launch

IASI L1 products dissemination

- Cal/Val Team contribution for SIOV have been underestimated
 - New instrument, on-board processing
- Overall L1 Cal/Val activity broken down in 80 elementary tasks

Use of other MetOp instruments during IASI Cal/Val

Inter calibrations done with respect to AVHRR and HIRS

Normal Operation Mode

- Scanning the swath
- > 30 views / 8 sec

IASI: 2 operational modes

External Calibration Mode

(here quasi-nadir looking)

- Fixed viewing direction for 8 sec
- > 27 views / 8 sec
- + 1 raw interferogram available on ground every 8 seconds (over 408)
 - ► selection fully programmable

Overview of IASI processing

Overview of on-board processing

- 8 seconds cycle
 - > 30 views (times 4 pixels) for the Normal Op. Mode (27 in Ext.Cal Mode)
 - > 2 x 2 calibration views : hot (Black Body), cold (space), 2 scanning directions
- Main functions
 - Preprocessing of the interferograms (raw measurements of the interferometer)
 - · Integrity checks (spikes detections, etc.): limits provided by the ground

8 seconds

- Non-Linearity correction: tables provided by the ground (today from ground testing)

 Interferogram CS with spike PN3 SB3 CD0 LN 241
- Computation of calibrated spectra (radiometry)
 - · Internal tables used by calibration updated every 8 sec
 - Reduced spectra Initial values provided by the ground
 - Integrity checks: limits provided by the ground
- Spectra encoding to reduce data rate
 - Programmable Coding Tables provided by the ground

Processing

Calibration views

Earth views

First IASI Conference – November, 13-16 2007, Anglet France

D. Blumstein CNES - IASI L1 Cal/Val Team 12

Overview of ground (Level 1) processing IASI science data

Parameter updates

- General philosophy
 - Batches of modifications delivered to EUMETSAT
 - Relatively low frequency of modifications
 - Validation of the modifications in short loop using the copy of the L1 processing chain available in the IASI TEC
- 4 sets of parameter delivered to EUMETSAT during the Cal/Val
 - Set 1 operational: 15th of January
 - Set 2 operational: 2nd of April
 - Set 3 operational: 27th of June (1st part) & 5th of July (2nd part)
 - Set 4 operational: 11th of July
 - Set 1, 2 and Set 4: with L1 (ground) processing minor updates

Update Set 1 – 15th January

- On-board processing parameters
 - Limits set for integrity check of the Reduced Spectra updating
 - Limits set for spikes detection
 - Modification of Coding Table for Earth View (EW) spectra coding
- On-ground processing parameters
 - Optimised filtering parameters
 - black Body temperature
 - · interferometric axis
 - · Rejection of measured spectral shifts

- Return to nominal on-board calibration after the "loss" of half of the Reduced Spectra during the Christmas period + protection against such events
- Improved coding resolution by reducing margins on the dynamic of spectra
- Large improvement of the number of badly flagged spectra (false alarms due to IIS / AVHRR coregistration failure)

Update Set 2 – 2nd April

On-board parameters

- New Reduced Spectra
 - · Needed because of small changes of the instrument alignment (around 0.04 μm)
- New limits set for radiometric calibration integrity checks
- Increase of the filtering length for radiometric calibration
- On-ground processing parameters
 - Spectral database update using Cube Corner offset (shear) measured in-flight
 - Optimised filtering parameters
 - black Body temperature
 - · interferometric axis
 - · Rejection of measured spectral shifts
 - Optimized parameters for IIS / AVHRR coregistration

- Large improvement of the spectral calibration (around 3 10⁻⁵)
- Return to nominal calibration for pixel 3
- Improvement of the stability of the calibrations (spectral and radiometric)

Update Set 3 – 27th June & 5th July

On-board parameters + L1 parameters

- Reduction of rejected spectra
 - spike reason
 - NZPD reason
- Increase of the margin for coding spectra
 - Nb of Overflows began to increase in June over hot regions
 - · (Iran, Turkmenistan, etc.)
 - Maximum coding temperature in atmospheric windows around 335 K
- Improvement of the radiometric calibration
 - Post-calibration for scan mirror reflectivity change with incidence
 - Optimisation of the on-board filtering length
- Reduced Spectra update
 - stability expected for the next 3 months at least
- Reduction of the width of overlap regions (B1/B2) and (B2/B3)

Update Set 4 – 11th July

- L1 Processing parameters + associated Level 1 processing update
 - Update of IPSF
 - Pixel dependency of the "natural phase"
 - IIS / AVHRR Nominal Offset

- Improved spectral calibration
 - · Reduction of interpixel spectral shift
 - · Slight improvement of the absolute spectral shift error
- Localisation when IIS/AVHRR co registration fails
- Strong decrease of the number of L1 radiances "overflows"
 - During encoding of radiances into 16 bits integers
- > Quality indices in Level 1 products

Parameters update : on-board limits

- Relaxation of 2 limits
 - Spikes detection
 - > NZPD quality index EW
- Careful analysis of impact on product quality done during Cal/Val B
 - Tolerable spikes effect on the noise
 - > No Compromise
 - · False Alarms
 - Non detection of errors
 - 2 levels of monitoring keep the non detection rate to 0

Parameters udpdate: spectra coding tables

- Nb of overflows in coding spectra began to increase beginning of June
 - Small fraction of the spectra: 225 /day < 0.1 % of the spectra</p>
 - Location : middle east (Iran, Turkmenistan, deserts ...)
 - Observed spectra are warmer than the ones in Southern hemisphere summer
- On-board coding tables optimization: updated 5th of July
 - Tables suitable for the current northern summer period

Lessons learned (1/2)

- Instrument design provides good stability
 - In-flight behavior very close to the one measured on-ground
 - > Optical bench accurate thermal control (at ambient temperature)
 - Dimensional stability (hence spectral calibration stability)
 - Radiometric calibration stability
 - But effect of "warm" optical bench on noise in band B3
 - Could be mitigated (background flux reflected in anti-contamination window)
 - Modifications after PFM ground testing against ice contamination
 - · In-flight confirmation of good results obtained on ground
- Instrument design provides good testability
 - External Calibration Mode
 - Verification Data Selection (raw interferograms)
 - Redundancy (e.g. Spectra in interband B1/B2, B2/B3)

Lessons learned (2/2)

- Integrated Imager very valuable
 - Easy registration with sounder and AVHRR
 - Very useful for test scenes selections
 - Provide images for calibration views (CS1,CS2, ... moon)
 - Provide images during the ground testing
- Use of spectra in the interbands B1/B2 and B2/B3 should be avoided by the users for precise analysis
 - Insufficient knowledge of Instrument Spectral Response Function (ISRF)
 - But very useful for performance verifications
- On-board processing working flawlessly
 - > All on-board monitoring algorithms proved useful to cope with real data
 - · Spikes detection, Reduced Spectra and Radiometric Calibration integrity checks

Thank you

- Visit the CNES IASI Web site
 - http://smcs.cnes.fr/iasi