

Three-dimensional distribution of a major Saharan dust outbreak in June 2011 derived from IASI

J. Cuesta¹, C. Flamant², M. Eremenko¹, G. Dufour¹, B. Laurent¹, G. Bergametti¹, F. Aires³ and C. Ryder⁴

Scientific motivation

3D distribution of desert dust

Life cycle of dust:

uplift, transport and deposition

Environmental impacts:

Air quality, radiative budget, atmospheric dynamics, etc.

- → Satellite observations are key for observing desert dust distribution, but most standard products only provide a 2D distribution (horizontal and transects) or a mean altitude of dust layers.
- → We propose to describe the full 3D distribution of dust with AEROIASI

AEROIASI:

An auto-adaptive iterative fitting method using IASI thermal infrared spectra

Aerosol extinction profiles at 10 μ m $\alpha^{ext}(z)$ for each cloud-free IASI pixel

AEROIASI:

Retrieval of the 3D distribution of desert dust for each IASI overpass

AOD from AEROIASI vs AERONET

Daily comparison of AEROIASI with AOD^{Coarse} from 12 AERONET sites in June 2011

- ✓ Low mean bias : <3%</p>
- ✓ Good correlation: R=0.86
- ✓ Precision: 0.18
- ✓ From this comparison we estimate

Dust horizontal distribution: **AEROIASI** vs other products

→ AEROIASI: dust structures in close agreement with SEVIRI and quantitative agreement with AERONET
→ Underestimation for MODIS and OMI with respect to other products and AERONET

Dust horizontal distribution: **AEROIASI** vs other products

→ AEROIASI: dust structures in close agreement with SEVIRI and quantitative agreement with AERONET
→ Underestimation for MODIS over the Sahara with respect to other products and AERONET
→ Agreement of AEROIASI and MODIS over the Atlantic

Summary

- ✓ AEROIASI shows remarkable skills for describing the 3D distribution of dust, over land/ sea for most IASI cloud-free pixels (Cuesta et al., JGR 2015)
 - Over the land (Sahara) and sea:

Sahara and MODIS over sea

- → Vertical structure of dust plumes: Agreement with CALIOP lidar transects
- → AOD in good agreement with AERONET (coarse mode)
- → Horizontal distribution of dust plumes in agreement with SEVIRI products over the
 - AEROIASI 3D distribution of dust provides new insights on:
- → Saharan dust emission mechanisms, 3D transport pathways of dust and advection over the Atlantic
- On-going & upcoming:
- Inter-comparisons with other products: vertical distribution of dust in the framework of CCI Aerosol and AOD/dust properties within a CNES/AERIS project
- Comparisons with chemistry-transport models (CHIMERE, WRF-Chem)

Acknowledgements

Principle for observing dust vertical distribution with IASI

