Ammonia (NH₃) Distributions and Recent Trends by 13-year AIRS Measurements

J. X. Warner¹, Z. Wei¹, L. L. Strow², R. R. Dickerson¹, J. B. Nowak³, Y. Wang⁴

- In Print at ACP: The Global Tropospheric Ammonia Distribution as seen in the 13-year AIRS Measurement Record
- In Prep: Recent Trends in the Global Tropospheric Ammonia in the 13-year AIRS Measurement Record
- Funded by NASA's The Science of Terra and Aqua Program (NNX11AG39G), and the Atmospheric Composition Program (NNX07AM45G).

¹ Dept. of Atmospheric and Oceanic Science, UMCP;

² Dept. of Physics and JCET, UMBC;

³ Aerodyne Research, INC

⁴ University of Taxes, Houston, Taxes

Why Ammonia

 Ammonia (NH₃) plays an increasingly important role in the global biogeochemical cycle of reactive nitrogen as well as in aerosol formation and climate.

Why AIRS

- Measurements with daily and large global coverage are challenging and have been lacking before the recent satellites of IASI, TES, and AIRS, partly because the lifetime of NH_3 is relatively short and partly because it requires high sensitivity for the retrievals that can be only obtained from areas with high thermal contrasts near the surface (Clarisse et al., 2010).
- AIRS afternoon overpasses (1:30pm) are best correlated with the daily emission peak time and during the daily period with the highest thermal contrast. Additionally, AIRS large coverage with wide swaths and cloud-clearing provide daily NH₃ maps. The 13-year data records makes AIRS the best sensor for NH₃ trends and variability studies (to date).

AIRS NH₃ Algorithm - I

- AIRS NH₃ retrievals use Optimal Estimation (OE) technique (Rodgers, 2000);
- CCRs and SARTA are used as in AIRS algorithm for other species;
- Globally one set a priori profiles;
- The a priori levels are computed from GEOS-Chem;

AIRS NH₃ Algorithm - II

- Select a priori pollution scenarios based on brightness temperature differences weighted by noise (DBTI);
- Higher polluted scenarios are correlated with high retrieval DOFS.

Validation vs CRDS/Picarro in DISCOVER-AQ CA

Spiral Profiles Only - 01/16 to 02/06, 2013 CRDS/Picarro data courtesy of Co-author J. Nowak

- Gray a priori; Red retrievals; Green solid in situ; and Blue dashed convolved in situ.
- AIRS L2 pixel sizes are ~45 km², can coincide with multiple in situ profiles.
- \bullet AIRS NH $_3$ measurements are most sensitive at 850-950 hPa layer.
- Profile locations and quality assurance criteria are in Warner et al., 2016

Global NH₃ in 2002-2015

- AIRS NH₃ at 918 hPa for daytime and land only averaged over Sept. 2002 to Aug. 2015;
- Use Q0; DOFS ≥ 0.1;
- High concentrations are mainly due to human activities and fires;
- Use occurrences of higher emissions (lower) to distinguish between the two major sources: agricultural (high VMRs & high frequencies); BB emissions (high VMRs & low frequencies);
- Sources are seen in valleys (e.g., San Joaquin Valley, California in the U.S., the Po Valley, Italy, Fergana Valley, Uzbekistan, and the Sichuan Basin in China); Agricultural especially in irrigated lands (e.g., Azerbaijan, Nile Delta and near Nile River in Egypt, the Mid-West U.S., in the Netherlands, in Mozambique and Ethiopia, Africa, and especially the Indo-Gangetic Plain of South Asia).

Top panel: The NH₃ VMRs from the persistent sources filtered with the collocated occurrences of elevated concentrations (≥ 1.4 ppbv) using a threshold of 40 days;

Middle panel: Pasture and Cropland Map

<u>Bottom panel:</u> irrigated agricultural land areas.

Global NH₃ Seasonality over 13 years

- The strongest non-BB emissions in the NH occur in the spring and summer
- Highest non-BB emissions are over India, China, USA, and Europe.

Occurrences of High NH₃ DOFS > 0.1

• Distinguish occasional BB events from the livestock and agricultural activities.

NH₃ Short-term Trends - Last 13 years

- Slopes of linear fit of NH3 VMRs for each 1x1 grid.
- · Concentrations of anthropogenic emissions increased and BB decreased
- Trends due to BB are not conclusive due to the short record.

NH₃ Short-term Trends - Last 13 years

NH₃ VMRs at 918hPa US, China, India, & Europe

- Using high concentration and high frequent occurrences;
- The highest NH₃ concentrations in average occur in India/Pakistan & China.
- All 4 regions show increasing NH₃ trends in the last 13 years.
- Examine against OMI SO₂ & NO₂

AIRS NH₃ Seasonal Variations

- over USA, China, Europe, and India

- NH₃ in India seasonal variations are broad and no obvious increasing/decreasing trends;
- NH₃ for USA and China are similar, with peaks in both spring and summer;
- NH₃ low seasonal changes for Europe, regions selected are too large.

Comparison with GEOS-Chem simulation

Model NH₃ over China and India (2010) (MEIC inventory; level 1-7 average)*

- Summer peaks are consistent (~8 ppbv)
- Model is 2X lower in winter**
- Model misses the spring peaks

and summer by 20~30% Model misses the broad spring shoulder

- AIRS NH₃ is consistent with model in:
- Magnitude of peaking concentrations
- India is overall higher than China

- GEOS-Chem v9-02, nested-grid
- ** Note low sensitivity values are excluded!

AIRS NH₃ (top) vs OMI SO₂ (mid-) and NO₂ (lower) over Mid-US (red), China (blue), India (green) and Europe (cyan)

- The highest NH₃ concentrations in average occur in India/Pakistan, and China.
- All 4 regions show increasing NH_3 trends in the last 13 years.
- Decreased SO_2 from OMI largely explains the reason of NH $_3$ increases in Midwest U.S., China, and Europe.
- In India, SO₂ slightly increase except for 2015, NH₃ has not varied significantly.

Summary

- AIRS NH₃ products not only include 13 years data record, it also provide daily maps!
- AIRS retrieved vertical profiles show good agreement (~5 15%) with in situ profiles from the 2013 DISCOVER-AQ field campaign in central valley California.
- AIRS daily measurements captures the strong continuous NH_3 emission sources from the anthropogenic (agricultural) source regions, as well as emissions from biomass burning (BB).
- Ammonia trends increase over agriculture regions, where fertilizers are used as routine practice, decrease over BB regions (with insufficient records).
- Results are land only, daytime only, and over relatively higher thermal contrast regions. More work is needed to study the more complicated surface types, and regions with lower thermal contrasts.
- More validation over broader emission types and different regions are needed.