Evaluating the atmospheric columns of CH$_4$ retrieved from space using vertical profiles from aircraft and stratospheric balloon campaigns

Olivier Membrive $^{(1)}$, Cyril Crevoisier $^{(1)}$, Nicolas Meilhac $^{(1)}$, Colm Sweeney $^{(2)}$, Albert Hertzog $^{(1)}$, François Danis $^{(1)}$, Laurence Picon $^{(3)}$

$^{(1)}$ Laboratoire de Météorologie Dynamique / CNRS / IPSL
Ecole polytechnique, Université Paris-Saclay, 91128, Palaiseau Cedex, France

$^{(2)}$ CIRES, University of Colorado and NOAA/ESRL
Boulder, Colorado, USA

$^{(3)}$ Laboratoire de Météorologie Dynamique / CNRS / IPSL
UPMC Paris 06, 75005, Paris, France
Focus on validation of \(\text{CH}_4 \) mid-tropospheric columns retrieved from IASI.

Retrieval procedure: non-linear inference scheme (Crevoisier et al., 2013)

- Use of IASI channels around 7.7 \(\mu \text{m} \).
- Based on the 4A RT code and the latest edition of the GEISA database.
- Radiative biases are computed using the ARSA database.
- Version V8.3: global, day/night, vertical sensitivity provided for each retrieval.

| Tropics: max at 12 km. Mid-lat: max at 8 km. |

IASI CH\(_4\) average – 24 March to 8 April 2016

Vertical sensitivity of IASI CH\(_4\) retrieval
Comparisons with measurements from surface networks

- **Tropics (N&S):**
 - Seasonality and amplitude OK.
- **Southern hemisphere:**
 - 2-month shift, very few stations
- **Northern hemisphere:**
 - Strong differences!!
 - Large bias and shift in seasonality.
Comparisons with measurements from surface networks

• Tropics (N&S):
 → seasonality and amplitude OK.
• Southern hemisphere:
 → 2-month shift, very few stations
• Northern hemisphere:
 → Strong differences!!
 → Large bias and shift in seasonality.

Not appropriate due to vertical sensitivity of IASI and large variation of CH$_4$ along the vertical.
Validation with aircraft measurements

• Use of HIPPO flights.
• 5 campaigns (H1...H5).
• Along each flight: profile measurement of several trace gases including CH$_4$.

O. Membrive: Evaluating the atmospheric columns of CH$_4$ retrieved from space using vertical profiles
Validation with HIPPO aircraft measurements

Averaged CH₄ profiles in 4 latitudinal bands

60S:30S

30S:Equator

Equator:30N

30N:60N

Quite constant in the tropics

Quite constant in the tropics

Strong decrease above the tropopause (~8km)

O. Membrive: Evaluating the atmospheric columns of CH₄ retrieved from space using vertical profiles
Validation with HIPPO aircraft measurements

Averaged CH$_4$ profiles in 4 latitudinal bands

- **60S:30S**
 - CH$_4$ profiles with altitude and CH$_4$ concentration.
 - Weighting function indicated.

- **30S:Equator**
 - CH$_4$ profiles with altitude and CH$_4$ concentration.

- **Equator:30N**
 - CH$_4$ profiles with altitude and CH$_4$ concentration.

- **30N:60N**
 - CH$_4$ profiles with altitude and CH$_4$ concentration.

8 km = max of vertical sensitivity

O. Membrive: Evaluating the atmospheric columns of CH$_4$ retrieved from space using vertical profiles
Validation with HIPPO aircraft measurements

Overall (229 situations): 7.7 ± 17.0 ppbv (R = 0.76).
Tropics (180 situations): 5.8 ± 14.9 ppbv (R = 0.76).
Validation with HIPPO aircraft measurements

Overall (229 situations): 7.7 ± 17.0 ppbv (R= 0.76). Tropics (180 situations): 5.8 ± 14.9 ppbv (R= 0.76).

Small bias and std for straight profiles.

O.Membrive: Evaluating the atmospheric columns of CH₄ retrieved from space using vertical profiles
Overall (229 situations): 7.7 ± 17.0 ppbv (R= 0.76).
Tropics (180 situations): 5.8 ± 14.9 ppbv (R= 0.76).

Small bias and std for straight profiles.
Large bias and std when strong slope (missing data for applying AK)
Validation with HIPPO aircraft measurements

Overall (229 situations): 7.7 ± 17.0 ppbv (R = 0.76).
Tropics (180 situations): 5.8 ± 14.9 ppbv (R = 0.76).

Small bias and std for straight profiles.
Large bias and std when strong slope (missing data for applying AK)

Using a proper characterization of stratospheric CH₄ is mandatory to fully validate the retrievals.

Sources: models or balloons.
What's an AirCore?

AirCore = an **atmospheric sampling system** that allows **greenhouse gas measurements**

AirCore in 3 key points:
- Stems from an original Idea from P.Tans at NOAA
- **Long stainless steel tube**: treated with Suflinert® coating to avoid interaction with water vapor
- Magnesium Perchlorate dryer at inlet

Required flight parameters:
- Pressure probe(s) (Ambient P)
- Temperature probe(s) (Ambient T, Coil Temperature)
- GPS data...
- Relative humidity...

NOAA AirCore © Karion et al. 2010
What’s an AirCore? – sampling method

AirCore = an **atmospheric sampling system** that allows **greenhouse gas measurements**

1. **Preparation**

 Tube is filled with calibrated standard

Surface

30km

Ceiling
What’s an AirCore? – sampling method

AirCore = an atmospheric sampling system that allows greenhouse gas measurements

1. Preparation
 - Tube is filled with calibrated standard

2. Ascent
 - Tube empties

Ceiling

Surface

30km
What’s an AirCore? – sampling method

AirCore = an atmospheric sampling system that allows greenhouse gas measurements.

1. Preparation
 - Tube is filled with calibrated standard

2. Ascent
 - Tube samples ambient air

3. Descent
 - Tube empties

Surface

30km Ceiling

O. Membrane: Evaluating the atmospheric columns of CH₄ retrieved from space using vertical profiles
What’s an AirCore? – sampling method

AirCore = an atmospheric sampling system that allows greenhouse gas measurements

1. Preparation
 Tube is filled with calibrated standard

2. Ascent
 Tube empties

3. Descent
 Tube samples ambient air

4. Closed
 Surface

Ceiling

30km

O. Membrive: Evaluating the atmospheric columns of CH$_4$ retrieved from space using vertical profiles
What’s an AirCore? – sampling method

AirCore = an **atmospheric sampling system** that allows **greenhouse gas measurements**

1. **Preparation**
 - Tube is filled with calibrated standard

2. **Ascent**
 - Tube empties

3. **Descent**
 - Tube samples ambient air

4. **Closed**

5. **Analysis**
 - Calibrated Gas Standard ≠ Fill Gas
 - Continuous Gas Analyzer

Mixing ratios of gases

- CO$_2$,
- CH$_4$,
- CO...
 depending on the analyzer

O.Membrive: Evaluating the atmospheric columns of CH$_4$ retrieved from space using vertical profiles
Vertical resolution can be estimated thanks to:

- Molecular Diffusion
- Taylor Dispersion

and is directly affected by \textbf{(Length, diameter)}

Expected \textit{vertical resolution} for air sampled at different altitudes
(for 3h waiting time before analysis)

\begin{figure}
\centering
\includegraphics[width=\textwidth]{chart.png}
\caption{Expected vertical resolution for CO\textsubscript{2}/CH\textsubscript{4} profiles (m)}
\end{figure}
Overview of AirCore Data

LMD AirCores flown during the annual Stratoscience campaigns from CNES (in partnership with CSA)

Regular flight from Sodankyla
University of Groningen / Finnish Meteorological Institute

15 independent flights from Summer 2013 to 2015

O. Membrive: Evaluating the atmospheric columns of CH$_4$ retrieved from space using vertical profiles
The AirCore Profiles

15 AirCore CH₄ profiles from Sodankyla (Finland) and Timmins (Canada)

- Troposphere is quite stable (with respect to seasonal and regional variation)
- Strong decrease in the stratosphere (on average 800 ppb gradient between 120 hPa and 30 hPa)

O.Membrive: Evaluating the atmospheric columns of CH₄ retrieved from space using vertical profiles
The AirCore Profiles

15 AirCore CH₄ profiles from Sodankyla (Finland) and Timmins (Canada)

- Troposphere is quite stable (with respect to seasonal and regional variation)
- Strong decrease in the stratosphere (on average 800 ppb gradient between 120 hPa and 30 hPa)
Completing HIPPO profiles with Stratospheric Information from AirCores

HIPPO profiles in the North Mid-Lat

Comparison of IASI mid-tropospheric CH_4 with HIPPO CH_4

North Mid-Lat (33 situations): 18.8 ppb
Bias between HIPPO and IASI is corrected when taking into account realistic stratospheric behavior.

Large dispersion due to unappropriate stratospheric correction.

Need for collocated in-situ measurements.

North Mid-Lat (33 situations): 18.8 ppb → 6.1 ppb
Comparison of AirCore profiles with models

CH₄ Profiles from AirCore-HR and forecast from ECWMF

Legend

- CH₄ IFS/MACC (137 levels) (29/08/2014 12UTC)
- CH₄ AirCore-HR (29/08/2014)

- Excellent agreement in the troposphere (signatures)
- Not satisfactory above the tropopause

Impact on integrated columns when comparing to integrated CH₄:

IFS CH₄ = + 13 ppb

IFS Data: Courtesy of S. Massart & A. Augusti-Panareda

O. Membrive: Evaluating the atmospheric columns of CH₄ retrieved from space using vertical profiles
Validation of IASI CH₄ Data with AirCores

15 AirCore Profiles

IASI CH₄ Weighting Function

qAirCore CH₄

O.Membrive: Evaluating the atmospheric columns of CH₄ retrieved from space using vertical profiles
Validation of IASI CH$_4$ Data with AirCores

15 AirCore Profiles

IASI CH$_4$
Weighting Function

\ast

qAirCore CH$_4$

Collocation with LMD AirCore-HR
Timmins, Canada (29 August 2014)

➢ To get enough statistics averaging is done over a 10°x10° box on 1 day.
Validation of IASI CH$_4$ Data with AirCores

Comparison of IASI mid-tropospheric CH$_4$ with AirCore CH$_4$

Overall (10 cases) : 2.56 ± 15.08 ppb (R = 0.88).

O. Membrive: Evaluating the atmospheric columns of CH$_4$ retrieved from space using vertical profiles
Validation of IASI CH$_4$ Data with AirCores

Comparison of IASI mid-tropospheric CH$_4$ with AirCore CH$_4$

Overall (10 cases): 2.56 ± 15.08 ppb (R = 0.88).

O. Membrive: Evaluating the atmospheric columns of CH$_4$ retrieved from space using vertical profiles
Conclusion & Future Validation Strategies

Use of AirCore Balloon Data

- CH₄ validation in the Northern Hemisphere
- Possibility to extend this study to CO₂ and CO
- Other gases could be studied with AirCores

Future Campaigns

Aire-sur-Adour, France (2016),
- AirCore-light (Wheater Balloon), regular flights, starting from June

Trainou (Orléans), France (2016),
- multi-instrument campaign: on ICOS/TCCON site, AMULSE laser diode spectrometers, Lidar, AirCraft campaign, AirCore-light (Wheater Balloon)

Validation plans for IASI-NG, Merlin CH₄ and MicroCarb CO₂

- opportunities for intensive balloon campaigns together with aircraft flights

Remaining Questions

- What vertical resolution is needed?
- Assessment of temporal and spatial variability of the profiles