

Global distributions of IASI-CH₄

Evelyn De Wachter, Nicolas Kumps, Bavo Langerock, Ann Carine Vandaele and Martine De Mazière

Royal Belgian Institute for Space Aeronomy (BIRA), Brussels, Belgium

evelyn.dewachter@aeronomie.be

ABSTRACT: The IR team of BIRA has developed an automatized processing chain for the fast retrieval of tropospheric IASI CH₄ profiles with the ASIMUT Optimal Estimation Method (OEM) retrieval software [1]. Here we give a quality assessment of this new BIRA IASI CH₄ product and results of its validation with co-located NDACC ground-based observations. In addition first results will be shown of a comparison, on a global scale, with the IASI mid-tropospheric CH₄ product from Laboratoire de Météorologie Dynamique (LMD), that have been obtained as part of the ESA Climate Change Initiative Greenhouse Gas (GHG-CCI) project.

Tbl.1: BIRA IASI-CH₄ retrieval set-up and typical IASI-CH₄ averaging kernel (AK). Sensitivity of the retrievals lies in the 4-17 km altitude range.

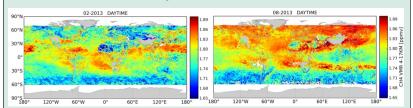


Fig. 1: Monthly mean column averaged BIRA IASI-CH₄ between 4 and 17 km for February and August 2013. Only daytime retrievals are shown. We see a clear increase in CH₄ at high latitudes in NH summer probably due to increased wetland emissions.

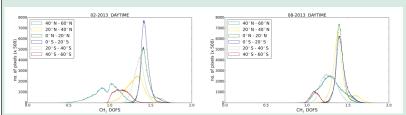


Fig. 2: Degrees Of Freedom for Signal (DOFS) for different latitudinal bands for February and August 2013 (daytime retrievals). On the global scale, the values range between 1 and 1.7 for NH summer, and between 0.5 and 1.7 for NH winter, when values can become less than 1 for latitudes > 40° N (between 0.9 and 1.6, and between 0.35 and 1.6 respectively for nighttime retrievals; not shown here). In the tropics, DOFS are typically around 1.4, hence 1 atmospheric column is retrieved.

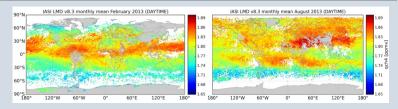
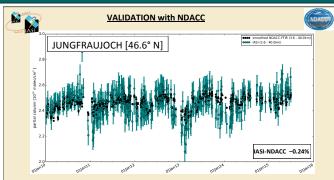



Fig. 7: Monthly means of the LMD v8.3 IASI-CH₄ daytime product for February and August 2013. Given is the so-called qCH₄ in vmr, a mid-tropospheric column with peak sensitivity at about 230 hPa (~11 km) and half the peak sensitivity at 100 and 500 hPa (~6 and 16 km). The LMD IASI-CH₄ retrievals are based upon a non-linear regression inverse radiative transfer model using Multi-Layer Perceptrons [3]. Comparing Fig. 7 to Fig. 1 we see that similar features in the CH₄ distribution are captured by the two algorithms.

Fig. 4 : Timeseries of smoothed **NDACC FTIR CH₄ [black]** and **BIRA IASI-CH₄ [blue]** partial columns (surface-40 km) at Jungfraujoch. The vertical bars represent the retrieval error. The NDACC FTIR profiles are **smoothed with the IASI AK** and a common a priori profile is used for both IASI and NDACC retrievals. We see a **good representation of the seasonal cycle** by IASI and a mean relative difference of -0.24%.

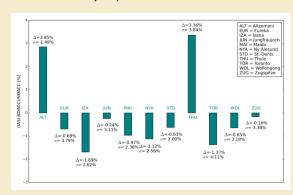


Fig. 5 : Barchart of **smoothed NDACC-IASI CH**₄ partial columns (surface-40 km) at **11 NDACC** sites for the timeperiod **2010-2015**. The mean (IASI-NDACC)/NDACC (Δ) and standard deviation (σ) of the relative differences is given for each site. We have an overal negative bias for IASI < 1.7% with exception of the sites Altzomoni and Thule, who show a positive bias.

COMPARISONS with IASI-LMD CH4

As part of ESA GHG-CCI the **BIRA IASI CH**₄ fields are compared to the **LMD CH**₄ product on a **global scale**. $\frac{n}{\sum_{i=1}^{n} H_{i} \Delta p_{i} x_{i}}$

For the comparison the BIRA qCH₄ is calculated as : $q_{BIRA} = \frac{\sum_{i=1}^{i-1} H_i \Delta \rho_i}{n}$ where H_i is the LMD weighting function interpolated to the BIRA pressure grid. n is the number of BIRA pressure layers Δp_i and x_i the BIRA CH₄ profile in vmr.

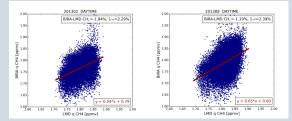


Fig. 6 : Correlation plots of LMD qCH4 and BIRA qCH₄ for February and August 2013. We see overal lower values of BIRA qCH4 wrt LMD qCH4 with relative differences of -1.84% for February and -1.19% for August, and a standard deviation $(1-\sigma)$ of the difference below 2.4%.

ACKNOWLEDGEMENT: The work presented is funded by the IASI.Flow PRODEX program and by the ESA GHG-CCI project.

- [1] Vandaele, A.C., et al., Modelling and retrieval of Atmospheric spectra using ASIMUT in Proc. of the First 'Atmospheric Science Conference', ESRIN, Frascati, Italy, 8 12 May 2006.
- [2] Zhou, D. K., Larar, A. M., Liu, X., Smith, W. L., Strow, L. L., and Yang, P.: Global land surface emissivity retrieved from satellite ultraspectral IR measurements, IEEE T. Geosci. Remote, 49, 1277–1290, 2011.
- [3] Crevoisier, C., Nobileau, D., Fiore, A., Armante, R., Chédin, A., and Scott, N. A.: Tropospheric methane in the tropics first year from IASI hyperspectral infrared observations, Atmos. Chem. Phys., 9, 6337-6350, 2009.