New insights into the hydrological cycle from IASI δ D distributions across the globe

Water isotopologues

- Water isotopologues $-\mathrm{H}_{2}^{16} \mathrm{O}, \mathrm{HDO}, \mathrm{H}_{2}{ }^{18} \mathrm{O}$ - have different vapour pressures
- $\mathrm{H}_{2}{ }^{16} \mathrm{O}$ preferentially evaporates
- HDO preferentially condenses
- Every phase change is recorded in the isotopic ratio δD

$$
\delta D=1000 \times\left(\frac{H D O / H_{2}{ }^{16} O}{S M O W}-1\right)
$$

Standard Mean Oceanic Water
The isotopic ratio tells us :

- about the degree of rainout of an airmass from its origin above the ocean
- about different sources of water vapour (oceanic/continental)
- about the different processes affecting the airmasses

Water isotopologues - numbers

$$
\delta D=1000 \times\left(\frac{H D O / H_{2}{ }^{16} O}{S M O W}-1\right)
$$

$\delta \mathrm{D}=0 \%$ in the ocean
$\sim-80 \%$ above the ocean
$\sim-500 \%$ at the tropopause

- Variability of water vapour is large!

$$
\delta D=1000 \times\left(\frac{H D O / H_{2}{ }^{16} O}{S M O W}-1\right)
$$

Natural variability of $\delta \mathrm{D}$ [\%。] (global)

- Small variations of the isotopic ratio!

We need a methodology that is sensitive over the wide dynamical range of water variations and precise to capture isotopic variations

- Depending on the altitude range a precision between 10 and 50% is needed
- 10% ~ a variation of 1% of $\mathrm{H}_{2} \mathrm{O}$

Retrieval methodology

OEM with a constraint on $\log (\mathrm{HDO} / \mathrm{H} 2 \mathrm{O})$
[Worden et al., 2006; Schneider et al.,2006]

- Short spectral range 1195-1253 cm-1
- Full inversion on the 10 first layers of the atmosphere
- Temperature profiles from EUMETSAT L2
- cloud flag < 10%

סD profiles with 1-2 DOFS
\rightarrow Vertical sensitivity is limited (generally in the free tropopshere)
[Lacour et al., 2012]
Error of 38 permil for an individual measurement

Cross validation

- Cross-validated against TES and ground-based FTIRs (MUSICA)
[Lacour et al., 2015 AMT]
- Cross validation of $\mathrm{H} 2 \mathrm{O}, \delta \mathrm{D}$ but also of the relationship $\mathrm{H} 2 \mathrm{O}-\delta \mathrm{D}$

- With a better spectral resolution $\left(0.1 \mathrm{~cm}^{-1}\right)$ TES can provides estimates of $\delta \mathrm{D}$ in the boundary layer
- IASI Sensitivity to δ D decreases for high water vapour contents

Applications of IASI δ D retrievals

Interpretation of $\delta \mathrm{D}$ et H 2 O observations
-> Simple models [Noone et al.,2012]

Rayleigh Model

Applications of IASI δ D retrievals

Interpretation of $\delta \mathrm{D}$ et H 2 O observations
-> Simple models [Noone et al.,2012]

Applications of IASI δ D retrievals

Interpretation of $\mathrm{\delta D}$ et H 2 O observations
-> Simple models [Noone et al.,2012]

Mixing Model

Applications of IASI δ D retrievals

North Atlantic - Influence of the Sahara

North Atlantic - Influence of the Sahara

North Atlantic - Influence of the Sahara

Dynamical state of the atmosphere

South Pacific: influence of low clouds

0^{200}

- Low clouds enrich the free troposphere
- Clear signature of the free tropospheric moistening by low clouds
- Climate sensitive areas where a small change in water vapour has an exponential impact on radiative budget

Tropics: isotopic signature of convection's depth

δ D at 4,5 km IASI monthly averages
a)

In convective areas, δD is sometimes enriched, sometimes depleted. What could explain this different behaviours?
Intensity of convection? Depth of convection?

Tropics: isotopic signature of convection's depth

- $D_{r l}=$ Deviation from what would be predicted by a Rayleigh model
- $r\left(\log \left(\mathrm{H}_{2} \mathrm{O}\right)-\delta D\right)=$ gives indication on the processes -> $r<0=$ amount effect

For a given source:

$D_{r \mid}=0$ advection
$D_{r \mid}>0$ enriching mechanisms
$D_{r l}<0$ depleting mechanisms

Tropics: isotopic signature of convection's depth

- For any given convection intensity, the depth of convection is determinant in the isotopic composition of water vapour
- Water vapour is more enriched when associated with shallow heating/convection
- Water vapour is more depleted when
associated with deep heating/convection
- Amount effect is more frequent in deep convective environment

- Convection's depth gives to water vapour a particular isotopic signature

Tropics: isotopic signature of convection's depth

Climate implication:

- In GCM, shallow convection versus deep convection = result of multiple parametrizations specific to each model
- With consequences on:

Water vapour,
Chemical and aerosol transport,
Cloudiness (Cloud feedback)
Latent heating profiles - large scale circulation

- Sherwood et al., [2014] traced the uncertainty on climate sensitivity to the different ratios of deep and shallow convection in models

IASI δ D observations could serve to evaluate the representation of shallow vs deep convection in climate models

Conclusions and perspectives

- Distributions of δD at IASI resolution show well marked isotopic effects
- Many processes can be analysed under «the isotopic eye »
- Much more information in $\delta \mathrm{D}$ (record) than in $\mathrm{H}_{2} \mathrm{O}$ (Evapotranspiration, convection, air mass mixing, transport,...)
\rightarrow Powerfull tool to evaluate GCMs (about 10 isotope-enabled GCMs)
\rightarrow For weather forecasting?
By assimilating δ D observations [Yoshimura et al., 2014] showed that the assimilation of such obserbations constrain dynamic fields. The degree of improvement is proportional to the number of inputted data points.
- Climate (past and future) applications
- Retrieval of δD in the tropics (one orbit) is now operationnal
- With an improved retrieval scheme

Yoshimura et al., 2014

Zonal Wind (m / s) at bottom

Surface Pressure (Pa)

Air Temperature (K) at bottom

Recent progress in remote sensing of $\delta \mathrm{D}$

- 2004: Zakharov et al., GRL IMG/ADEOS

2006: Worden et al., Nature TES/AURA

- 2009: Frankenberg et al., Sciences,

SCIAMACHY/ENVISAT

- 2013: Frankenberg et al., AMT GOSAT/SWIR
- 2013: Boesch et al., AMT GOSAT/SWIR
- 2016: Scheepmaker et al., AMT TROPOMI

North Atlantic - Influence of the Sahara

$\delta \mathrm{D}$ seasonal cycle is controlled by:

- Change in water sources
- Transport
- Turbulent mixing
- Dynamical state of the atmosphere
- Intensity of the Saharan Heat Low
δ D seasonality (JA-DJ) [permil]

q seasonality (JA-DJ) [\%]

- Isotopic composition of water vapour is sensitive to many processes: convection/transport/evapotranspiration/mixing ...
- The capacity of a model to restitue δ D reflects its ability to represent all these processes
- Model evaluation against water vapour observations can be limited as
- Different processes can have the same impact on H2O
- Compensating effects in the models

Yoshimura et al., 2015:

- First assimilation experiment of δ D observations (TES, SCIAMACHY, GNIP, in situ)
- Positive score on T, P, wind fields

"From OSSE, IASI's impact is much larger than those of TES, SCIAMACHY, and GNIP-vapor for not only δD, but also environmental variables (temperature,

- The mechanism responsible of the amount effect in precipitation has long been debated
- 3 mechanisms are commonly used to explain the depletion of the precipitations:

In the water vapour:

- Amount effect is more frequent in deep convective environment
- The anti-correlated pairs corresponds to very humid free troposphere
- The rain re-evaporation more efficient when RH increases
\rightarrow In the vapour, the amount effect is found associated with deep convective environment with high RH \rightarrow rain re-evaporation mechanism

- MJO = principal mode of intra seasonal variability (30-60 days)
- Influence on global water cycle
- Persistant difficulties to simulate the water cycle in this region

Tuinenburg et al., JGR 2015

