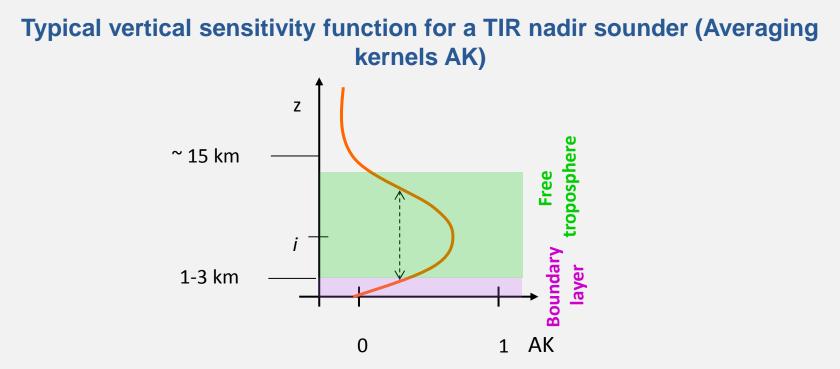

Measuring air pollution from thermal infrared satellite observations: when, where and how?

Thermal contrast - 06/2013 - AM

S. Bauduin L. Clarisse, C. Clerbaux, P.-F. Coheur



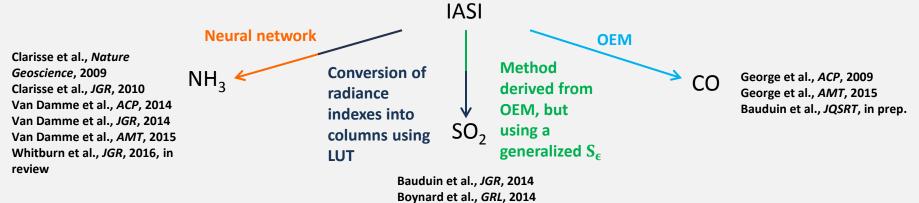
Monitoring air quality using TIR observations

Difficulty: Sensitivity limited by the thermal contrast $TC = T_{skin} - T_{air}$

→ Maximum sensitivity of TIR sounders in the mid troposphere

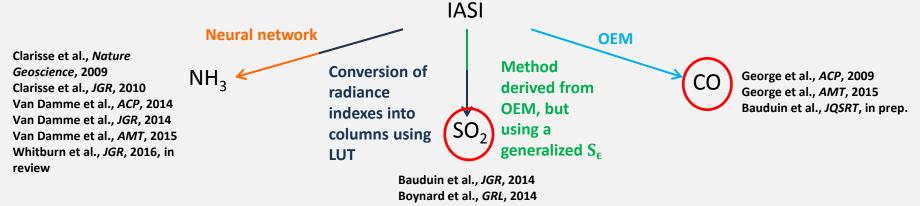
Recent studies have demonstrated the capabilities of IASI sounders to monitor near-surface pollution from local to global scales in favorable conditions

IASI

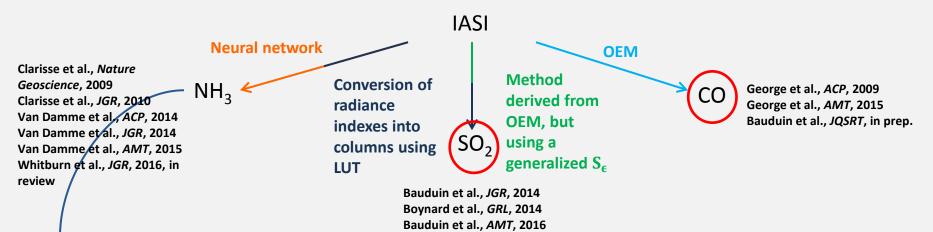

Clarisse et al., *Nature Geoscience*, 2009 Clarisse et al., *JGR*, 2010 Van Damme et al., *ACP*, 2014 Van Damme et al., *JGR*, 2014 Van Damme et al., *JGR*, 2015 Whitburn et al., *JGR*, 2016, in review CO Georg Georg Baudu SO₂

George et al., *ACP*, 2009 George et al., *AMT*, 2015 Bauduin et al., *JQSRT*, in prep.

Bauduin et al., *JGR*, 2014 Boynard et al., *GRL*, 2014 Bauduin et al., *AMT*, 2016


Recent studies have demonstrated the capabilities of IASI sounders to monitor near-surface pollution from local to global scales in favorable conditions

Bauduin et al., AMT, 2016

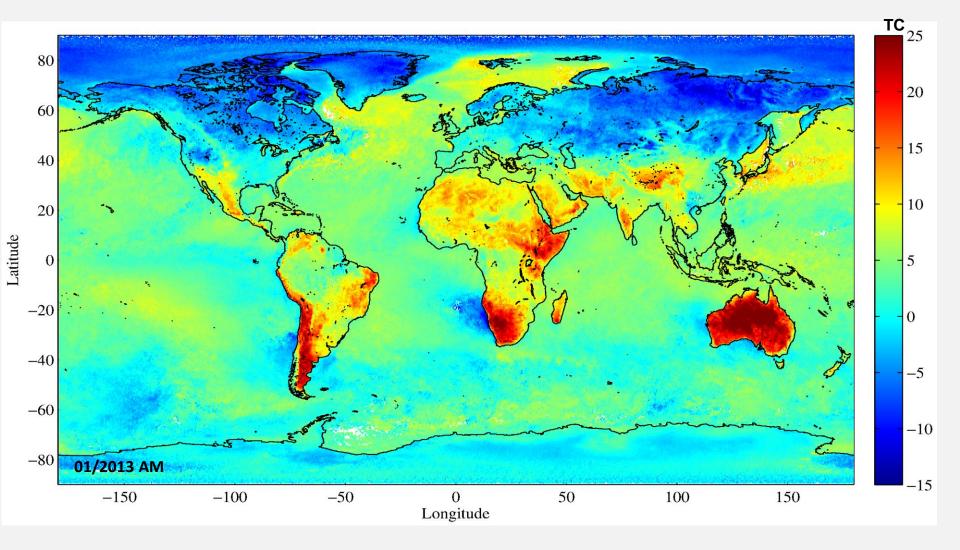

Recent studies have demonstrated the capabilities of IASI sounders to monitor near-surface pollution from local to global scales in favorable conditions

Bauduin et al., AMT, 2016

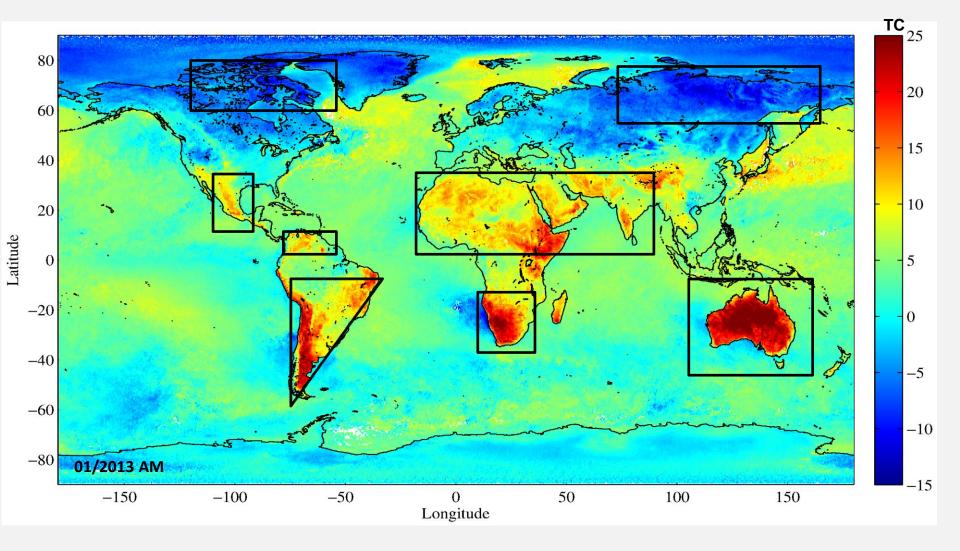
Recent studies have demonstrated the capabilities of IASI sounders to monitor near-surface pollution from local to global scales in favorable conditions

More details

- Previously:
 - Presentation of Van Damme M. on the variability of NH₃ (Tuesday afternoon)
 - Poster n° S3-44 of Whitburn S. on NH₃ emissions from biomass burning (Tuesday)
- Coming today:
 - Presentation of Zondlo M. on the validation of IASI NH₃ columns (this afternoon)
 - Poster n° S9-69 of Whitburn S. on the neural network method (this afternoon)



When and where the thermal contrast is large (both positive and negative)


When and where the thermal contrast is large (both positive and negative)

When and where the thermal contrast is large (both positive and negative)

The answer is in fact not straightforward!

• Seasonal variability of thermal contrast

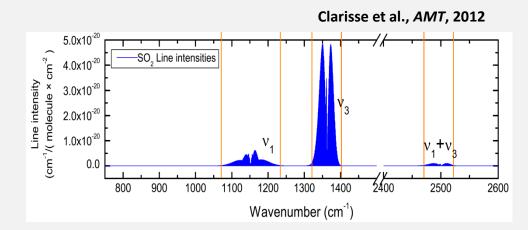
The answer is in fact not straightforward!

- Seasonal variability of thermal contrast
- Sensitivity depends on other factors:
 - Concentrations of the targeted species
 - These concentrations vary according to the source but also to the season
 - > The presence of interfering species (e.g. H_2O) \rightarrow spectral range

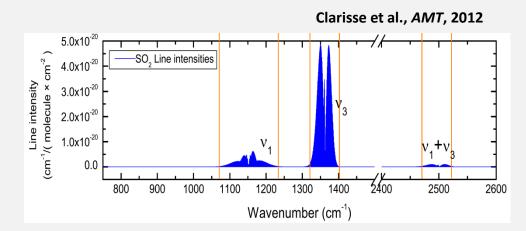

The answer is in fact not straightforward!

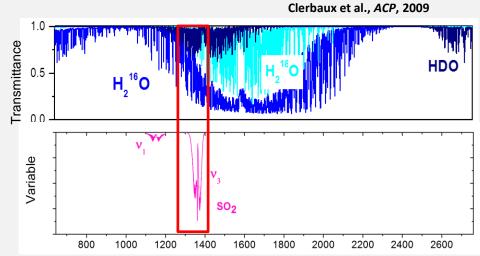
- Seasonal variability of thermal contrast
- Sensitivity depends on other factors:
 - Concentrations of the targeted species
 - These concentrations vary according to the source but also to the season
 - > The presence of interfering species (e.g. H_2O) \rightarrow spectral range
- The geophysical conditions that favor the sounding of the near-surface atmosphere can be different for different atmospheric species

The answer is in fact not straightforward!


- Seasonal variability of thermal contrast
- Sensitivity depends on other factors:
 - Concentrations of the targeted species
 - These concentrations vary according to the source but also to the season
 - > The presence of interfering species (e.g. H_2O) \rightarrow spectral range
- The geophysical conditions that favor the sounding of the near-surface atmosphere can be different for different atmospheric species

What is easy with measuring near-surface SO₂?


- Because of its short lifetime, SO₂ emitted at the surface usually remains confined close to the surface
- SO₂ has 3 vibrational bands in the spectral range covered by IASI: v₁ (1152 cm⁻¹), v₃ (1362 cm⁻¹) and v₁+v₃ (2500 cm⁻¹)


What is easy with measuring near-surface SO₂?

- Because of its short lifetime, SO₂ emitted at the surface usually remains confined close to the surface
- SO₂ has 3 vibrational bands in the spectral range covered by IASI: v₁ (1152 cm⁻¹), v₃ (1362 cm⁻¹) and v₁+v₃ (2500 cm⁻¹)

What is not easy with measuring near-surface SO₂?

- Concentrations of SO₂ close to ground are generally small
- The v₁ and the v₁+v₃ bands are hardly detected
- ✓ The v₃ band is detectable, but is located in the strong H₂O absorption → opacity in the lowest part atmosphere
- In case of volcanic eruption, need to distinguish volcanic plume from nearsurface pollution/degassing

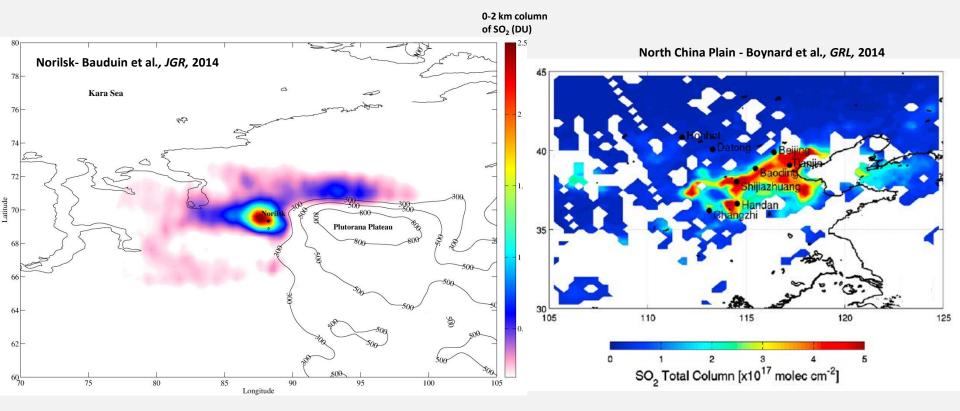
 v_3 band

First attempts: Norilsk¹ and North China Plain²

- Method based on the one presented by Carboni et al.³
- Relies on OEM
- Main idea: use of a total error covariance matrix S_{ϵ} in the retrieval

Presentation of E. Carboni (L. Ventress) on Tuesday

¹Bauduin et al., IASI observations of sulfur dioxide (SO₂) in the boundary layer of Norilsk, *JGR*, 2014 ²Boynard et al., First simultaneous space measurements of atmopsheric pollutants, *GRL*, 2014 ³Carboni et al., A new scheme for sulphur dioxide retrievals from IASI measurements: application to the Eyjafjallajökull eruption of April and May 2010, *ACP*, 2012



First attempts: Norilsk¹ and North China Plain²

Method based on the one presented by Carboni et al.³

v₃ band

- Relies on OEM
- Main idea: use of a total error covariance matrix S_{ε} in the retrieval
- Sensitivity in winter

¹Bauduin et al., IASI observations of sulfur dioxide (SO₂) in the boundary layer of Norilsk, *JGR*, 2014

²Boynard et al., First simultaneous space measurements of atmopsheric pollutants, GRL, 2014

³Carboni et al., A new scheme for sulphur dioxide retrievals from IASI measurements: application to the Eyjafjallajökull eruption of April and May 2010, *ACP*, 2012

Global scale¹

How?

 Method based on the one presented by Walker et al. (2011)² and expanded by Van Damme et al. (2014)³ for NH₃ Presentation of M. Van Damme and E. Carboni (L. Ventress) on Tuesday

¹ Bauduin et al., Retrieval of near-surface sulfur dioxide (SO₂) concentrations at a global scale using IASI satellite observations, *AMT*, 2016 ² Walker et al., An effective method for the detection of trace species demonstrated using the MetOp Infrared Atmospheric Sounding Interferometer, *AMT*, 2011

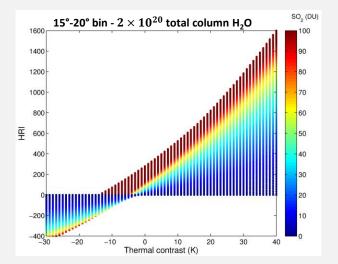
³ Van Damme et al., Global distributions, time series and error characterization of atmospheric ammonia (NH₃) from IASI satellite observations, *ACP*, 2014

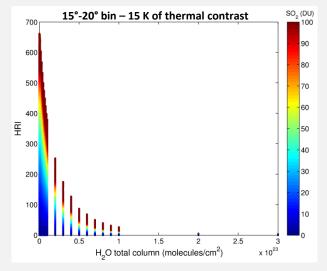
Global scale¹

How?

- Method based on the one presented by Walker et al. (2011)² and expanded by Van Damme et al. (2014)³ for NH₃
- Based on the calculation of radiance indexes (HRI), which represent the strength of v₃ band in IASI spectra
- Conversion of these indexes by using look-up tables

¹ Bauduin et al., Retrieval of near-surface sulfur dioxide (SO₂) concentrations at a global scale using IASI satellite observations, *AMT*, 2016 ² Walker et al., An effective method for the detection of trace species demonstrated using the MetOp Infrared Atmospheric Sounding Interferometer, *AMT*, 2011 ³ Van Demme et al., Clobal distributions, time series and error characterisation of atmospheric systems in the series and error characterisation of atmospheric systems.


³ Van Damme et al., Global distributions, time series and error characterization of atmospheric ammonia (NH₃) from IASI satellite observations, *ACP*, 2014



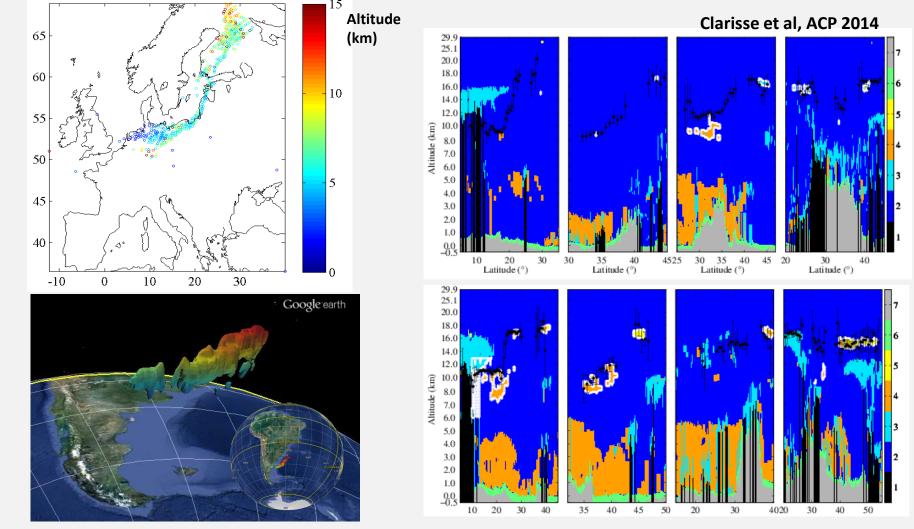
Global scale¹

How?

- Method based on the one presented by Walker et al. (2011)² and expanded by Van Damme et al. (2014)³ for NH₃
- Based on the calculation of radiance indexes (HRI), which represent the strength of v₃ band in IASI spectra
- Conversion of these indexes by using look-up tables
- 4D LUT: thermal contrast, total column of H₂O, zenithal angle and SO₂ column
- Associated tables of errors

¹ Bauduin et al., Retrieval of near-surface sulfur dioxide (SO₂) concentrations at a global scale using IASI satellite observations, *AMT*, 2016 ² Walker et al., An effective method for the detection of trace species demonstrated using the MetOp Infrared Atmospheric Sounding Interferometer, *AMT*, 2011

³ Van Damme et al., Global distributions, time series and error characterization of atmospheric ammonia (NH₃) from IASI satellite observations, *ACP*, 2014

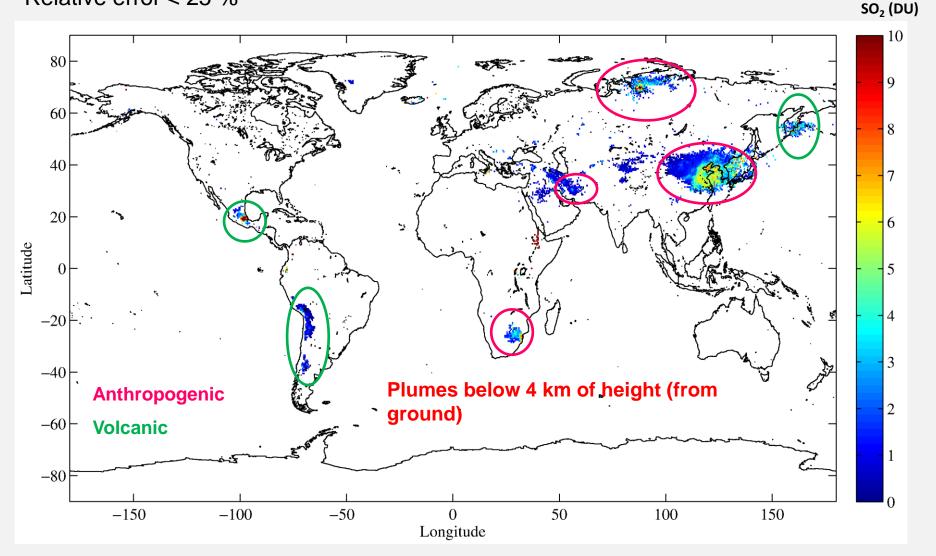


Measuring air pollution: SO₂

v₃ band

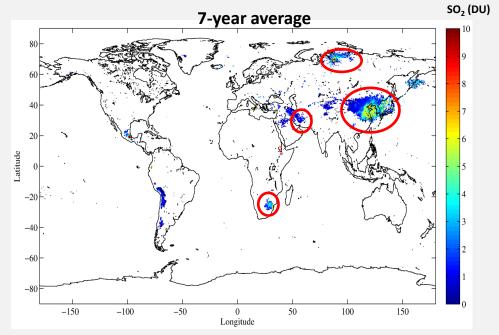
Global scale¹

- Need in a first step to determine the altitude of the plume
- Method follows the work of Clarisse et al., ACP, 2014² for the Nabro eruption



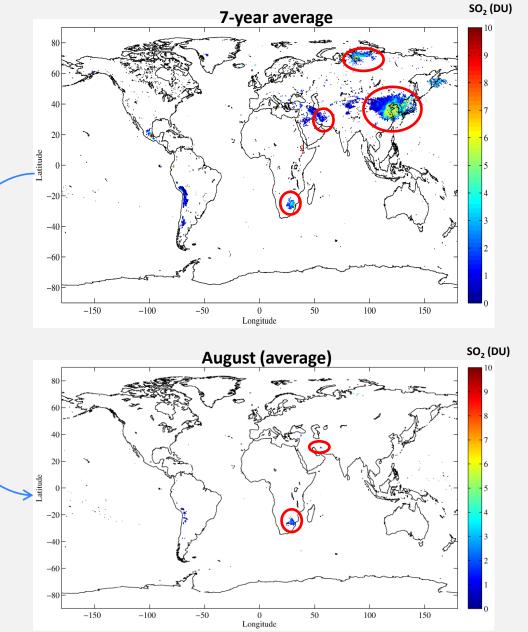
¹ Bauduin et al., Retrieval of near-surface sulfur dioxide (SO₂) concentrations at a global scale using IASI satellite observations, *AMT*, 2016 ² Clarisse et al., The 2011 Nabro eruption, a SO₂ plume height analysis using IASI measurements, *ACP*, 2014.

Global scale


- The magnitude of the error is related to the sensitivity \rightarrow can be used as a filter
- 7-year average (2008-2014, AM) of IASI measurements sensitive to near-surface SO₂
- Relative error < 25 %

Global scale

- The magnitude of the error is related to the sensitivity → can be used as a filter
- Comparisons filtered SO₂ maps with TC and H₂O maps



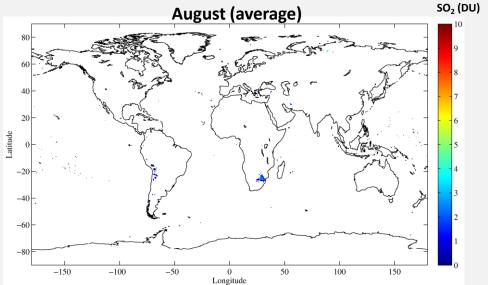
Global scale

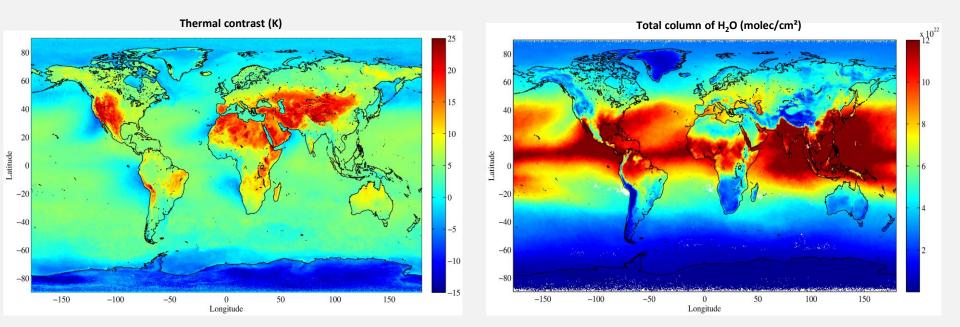
When and where?

- The magnitude of the error is related to the sensitivity → can be used as a filter
- Comparisons filtered SO₂ maps with TC and H₂O maps

Loss of China and Norilsk

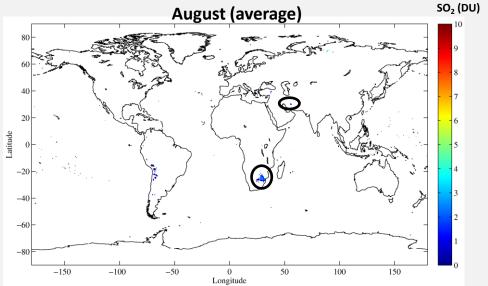
Global scale


- The magnitude of the error is related to the sensitivity → can be used as a filter
- Comparisons filtered SO₂ maps with TC and H₂O maps



Global scale

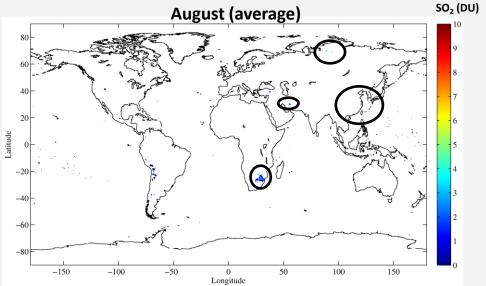
- The magnitude of the error is related to the sensitivity → can be used as a filter
- Comparisons filtered SO₂ maps with TC and H₂O maps

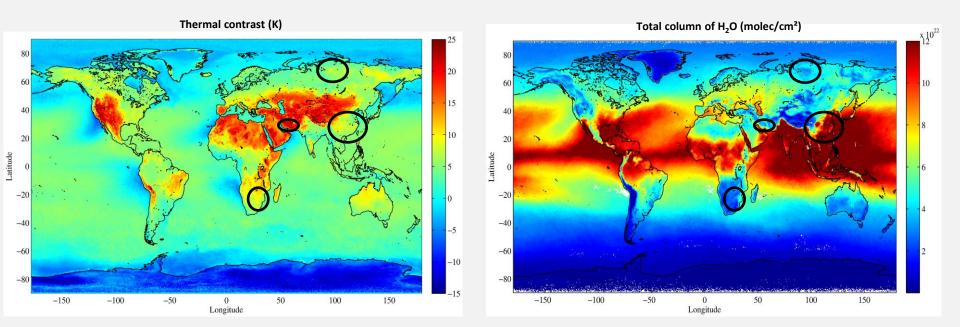




Global scale

- The magnitude of the error is related to the sensitivity → can be used as a filter
- Comparisons filtered SO₂ maps with TC and H₂O maps





Global scale

- The magnitude of the error is related to the sensitivity → can be used as a filter
- Comparisons filtered SO₂ maps with TC and H₂O maps

Global scale

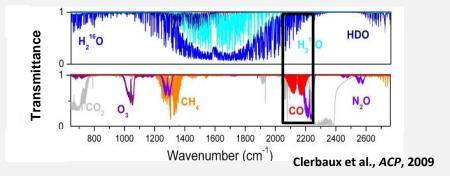
Regions	Periods	Sensitivity	Thermal contrast (K)	Total column of H ₂ O (molec/cm ²)
Norilsk	DJF MAM JJA SON	✓ ↓ X ↑	-15 K to -10 K -5 K 0 K -5 K	0.8x10 ²² 1.2x10 ²² 5x10 ²² 1x10 ²²
China	DJF MAM JJA SON	✓ ↓ X ↑	5 K 15 K to 20 K 10 K to 15 K 10 K	2-3x10 ²² 4x10 ²² 12x10 ²² 6x10 ²²
South Africa	DJF MAM JJA SON	X ↑ ✓	10K to 15 K 10 K 5 K to 10 K 15 K	5x10 ²² 2-4x10 ²² 1-2x10 ²² 2-4x10 ²²
Iran	DJF MAM JJA SON	\checkmark	10 K 20 K 25 K 20 K	1x10 ²² 1-2x10 ²² 3x10 ²² 2x10 ²²

Global scale

Regions	Periods	Sensitivity	Thermal contrast (K)	Total column of H ₂ O (molec/cm ²)
Norilsk	DJF MAM JJA SON	✓ ↓ X ↑	-15 K to -10 K -5 K 0 K -5 K	0.8x10 ²² 1.2x10 ²² 5x10 ²² 1x10 ²²
China	DJF MAM JJA SON	✓ ↓ X ↑	5 K 15 K to 20 K 10 K to 15 K 10 K	2-3x10 ²² 4x10 ²² 12x10 ²² 6x10 ²²
South Africa	DJF MAM JJA SON	X ↑ ✓	10K to 15 K 10 K 5 K to 10 K 15 K	5x10 ²² 2-4x10 ²² 1-2x10 ²² 2-4x10 ²²
Iran	DJF MAM JJA SON	\checkmark	10 K 20 K 25 K 20 K	1x10 ²² 1-2x10 ²² 3x10 ²² 2x10 ²²

Global scale

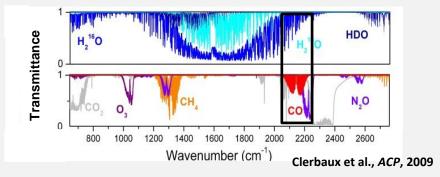
Conclusions:


- 1) Favorable conditions: **|TC|>5K and H₂O<4x10²²** molecules/cm²
- 2) These conditions determined using the **LUT** approach and the filter relative error<25%
- 3) Only valid for the v_3 band $\rightarrow v_1$ band less impacted by H₂O absorption

Measuring air pollution: CO*

What is easy with measuring near-surface CO compared to SO₂?

- ✓ Strong 0-1 vibrational band between 2000-2250 cm⁻¹
- Less impacted by H₂O absorption



Measuring air pollution: CO*

What is easy with measuring near-surface CO compared to SO₂?

- ✓ Strong 0-1 vibrational band between 2000-2250 cm⁻¹
- Less impacted by H₂O absorption

What is not easy with measuring near-surface CO compared to SO₂?

 ✓ It is present in the whole troposphere → need to decorrelate low troposphere and high troposphere

*This work has started with the SIROCCO Project, funded by ESA, under contract number 4000107088. The project was conceived and supervised by A.G. Straume-Lindner and O. Witasse

Method

3-step analysis:

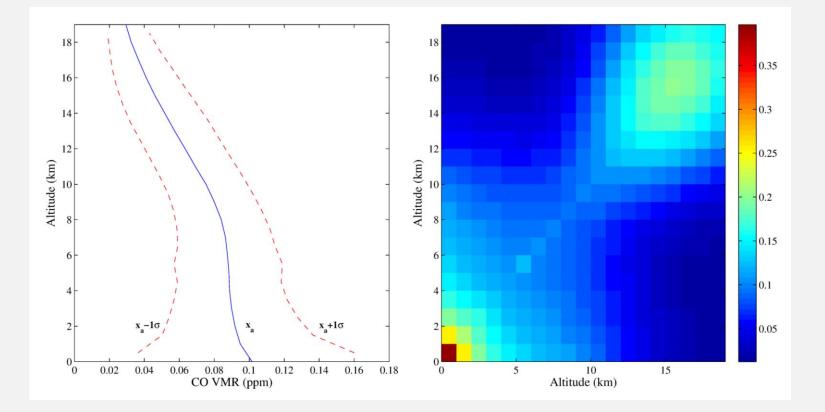
- 1) Spectral analysis: is it possible to detect a signal in IASI spectra due to an enhancement of CO close to the ground?
- 2) Theoretical characterization: influence of thermal contrast on error budget and information content
- 3) Test case: real retrievals performed above Mexico City and comparison with in-situ ground-based measurements

Bauduin et al., IASI sensitivity to near-surface carbon monoxide (CO): Theoretical analyzes and application to Mexico City, *in preparation for JQSRT*

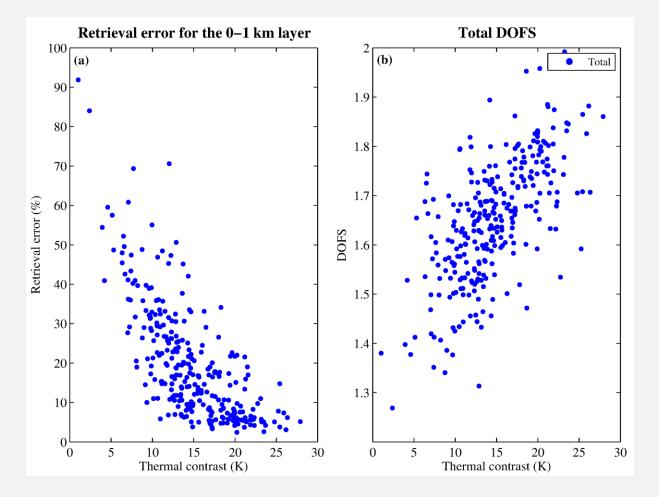
Method

3-step analysis:

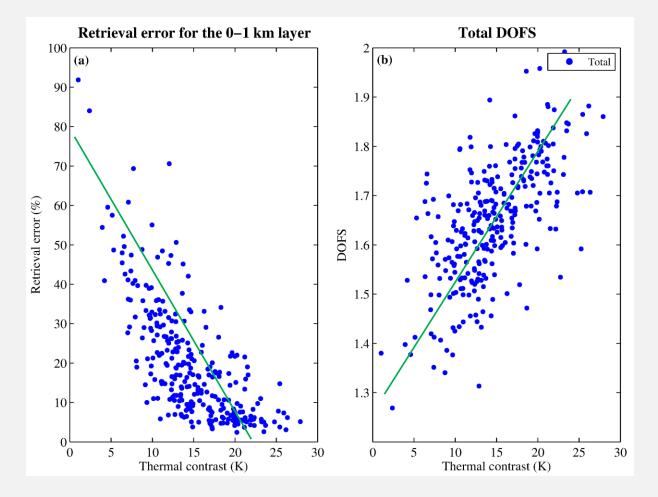
- 1) Spectral analysis: is it possible to detect a signal in IASI spectra due to an enhancement of CO close to the ground?
- 2) Theoretical characterization: influence of thermal contrast on error budget and information content
- 3) Test case: real retrievals performed above Mexico City and comparison with in-situ ground-based measurements


Bauduin et al., IASI sensitivity to near-surface carbon monoxide (CO): Theoretical analyzes and application to Mexico City, *in preparation for JQSRT*

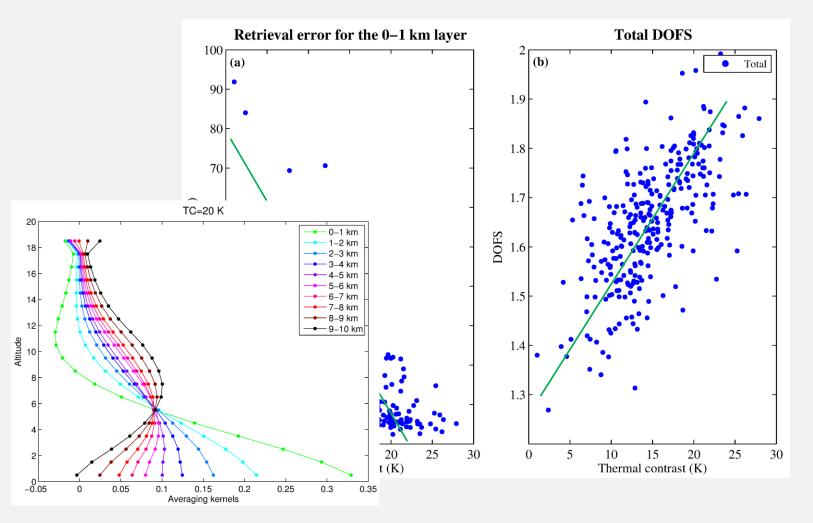
Measuring air pollution: CO


Real retrievals above Mexico City

- Performed with the Atmopshit software
- Most of retrieval settings of the FORLI algorithm:
 - 2143-2181.25 cm⁻¹
 - Noise: 2x10⁻⁷ W/(m² sr m⁻¹)
 - > A priori profile and covariance matrix
- Closest IASI measurement to Mexico City chosen

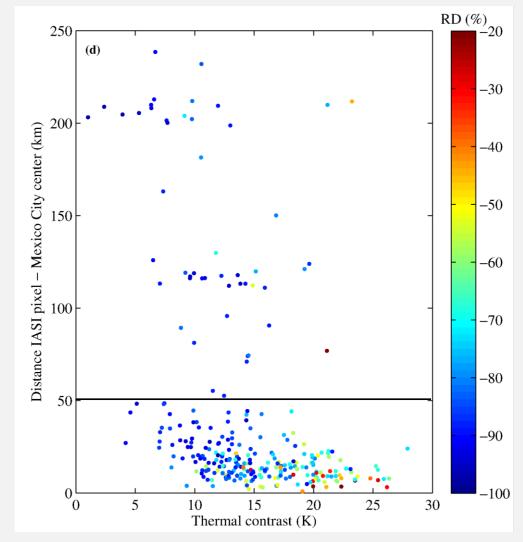


- Retrieval error and total DOFS directly impacted by the thermal contrast
- Total DOFS reaches almost 2 for TC >15 K



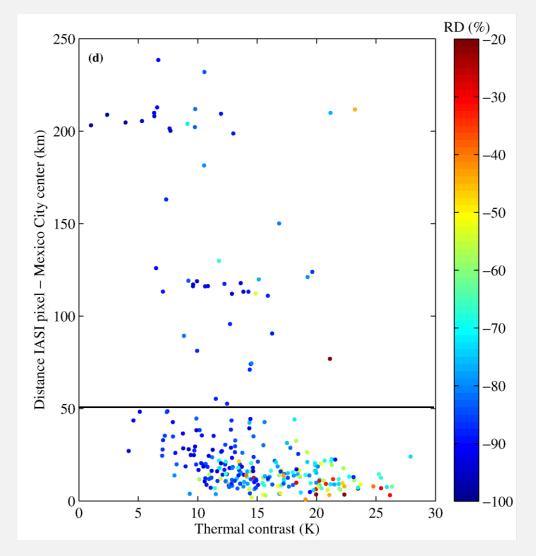
- Retrieval error and total DOFS directly impacted by the thermal contrast
- Total DOFS reaches almost 2 for TC >15 K

- Retrieval error and total DOFS directly impacted by the thermal contrast
- Total DOFS reaches almost 2 for TC >15 K



Measuring air pollution: CO

When and where? Real retrievals above Mexico City


 Relative difference (RD) between IASI retrievals and insitu ground-based mesurements (RAMA network)

Measuring air pollution: CO

- Relative difference (RD) between IASI retrievals and insitu ground-based mesurements (RAMA network)
- RD decreases with increasing the thermal contrast
 - can drop to -30% in some cases with TC>15 K

Sensitivity to near-surface CO

Conclusions:

- 1) IASI starts to be sensitive to near-surface CO from |TC|=5K
- 2) Values of |TC|>10-15K favors the decorrelation between the low and the high troposphere and small retrieval error
- 3) Performed characterization depends on the **chosen a priori** parameters

Measuring near-surface composition with IASI: when, where and how?

- Answer is not straightforward!
 - Seasonal variability of thermal contrast
 - Sensitivity depends on other factors:
 - Concentrations of the targeted species
 - These concentrations vary according to the source but also to the season
 - > The presence of interfering species (e.g. H_2O)
 - Spectral range
 - The geophysical conditions that favor the sounding of the near-surface atmosphere can be different for different atmospheric species
 - Characterization depends on the a priori parameters
- \circ Review of results for SO₂ and CO

 \rightarrow TC conditions encountered above land

Thank you!

