Physical properties of mesoscale high-level cloud systems in relation to their atmospheric environment deduced from Sounders

Sofia Protopapadaki, Claudia Stubenrauch, Artem Feofilov

Laboratoire de Météorologie Dynamique / IPSL, France

IASI Conference, April 2016, Antibes, France

Importance of Upper Tropospheric Clouds

• High altitude clouds represent ~40% of total cloud cover (Stubenrauch et al. 2013)

Formation:

- when cold air is supersaturated with water
- as the outflow of convective systems

Modulation of Earth's energy budget and heat transport depends on:

- area coverage of high cloud systems
- emissivity distribution within high cloud systems

Blue: High clouds, (Dark \rightarrow light decreasing ε_{old}) White: other clouds

temperature difference between highest clouds & surface/clouds underneath

Cloud feedbacks → main uncertainty in climate models!

What is the role of cirrus in regulating the Earth's climate & hydrological sensitivities?

Why using IR Sounders to derive cirrus properties?

TOVS, ATOVS, AIRS, CrIS, >1979/≥1995 ≥2002/≥2012

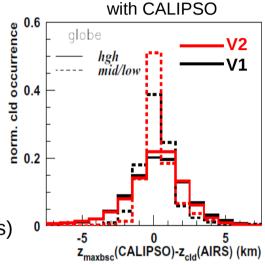
IASI (1,2,3), IASI-NG ≥2006 / ≥ 2012 / ≥ 2020

7:30 AM/PM,

1:30 AM/PM,

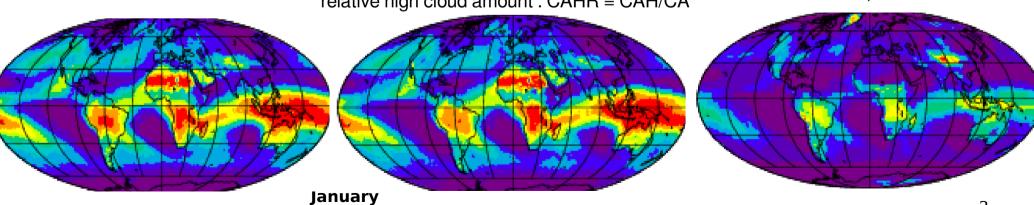
9:30 AM/PM

- → good spectral resolution → sensitive to cirrus
- retrieval day & night, land & sea
- ➤ synergy with RH_{ice}, aerosols etc.
- Foliation | Fo


modular retrieval code: LMD-CIRS (LMD Cloud retrieval from IR Sounders) used for AIRS, IASI (LMD) & for TOVS/ATOVS (CM-SAF)

Weighted χ^2 method \rightarrow get cloud properties: ϵ_{cld} , p_{cld} , T_{cld}

IASI-LMD 2008-2015 (reanalysis V2)


AIRS-LMD 2003-2015 (reanalysis V2)

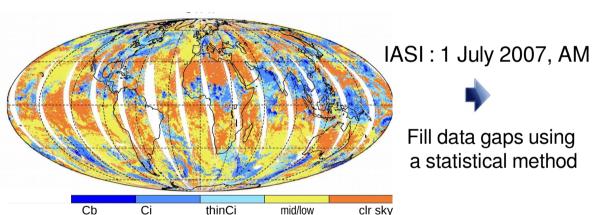
relative high cloud amount : CAHR = CAH/CA

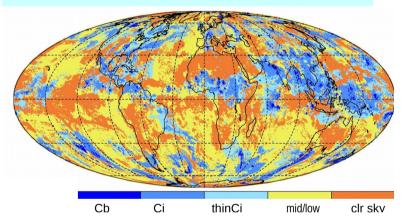
AIRS cloud height evaluation

ISCCP 1984-2007 from GEWEX Cloud assessment Database (Stubenrauch et al. 2013)

AIRS and IASI -LMD L2 Data: distributed by: http://www.icare.univ-lille1.fr/

From pixels to cloud systems

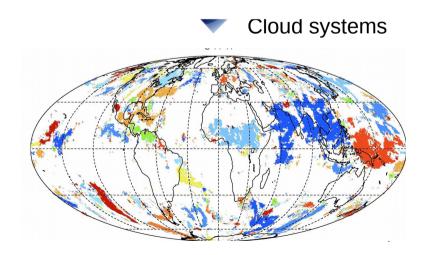

Clouds are **extended objects**, driven by dynamics → **organized systems**


Method: regroup adjacent grids containing high clouds & build statistics over:

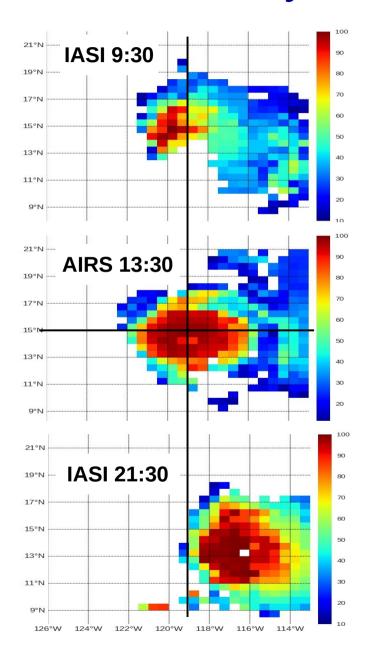
convective cores / thick Ci anvil / thin Ci $\varepsilon_{cld} > 0.98$

 $/0.5 < \epsilon_{cld} < 0.98$ / $\epsilon_{cld} < 0.50$

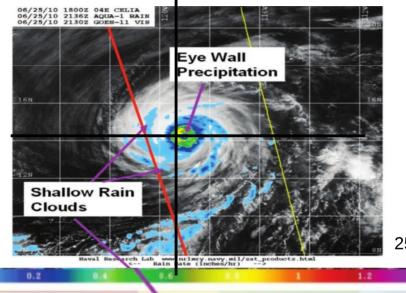
distinguish systems with & without convection, count convective cores

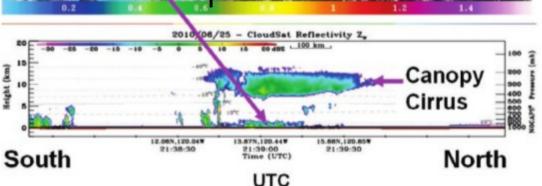


High cloud definition : $P_{cld} - P_{tropo} < 250 \text{ hPa}$


Spatial continuity constrains on cloud systems:

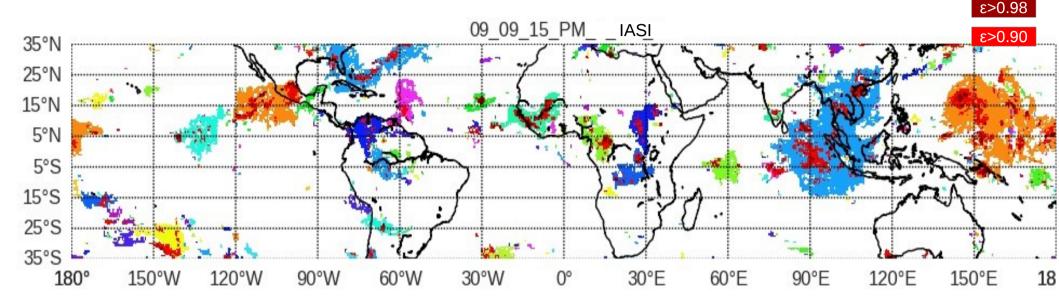
- adjacent high clouds (70% in 0.5°x 0.5°)
- P_{cld} difference < 50 hPa
 - → 2003-2015 AIRS-LMD dataset
 - → 2007-2015 IASI-LMD dataset

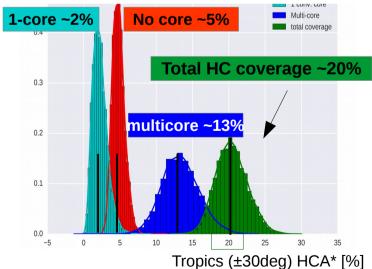

All months included, tropics (+/- 30 degrees)


Data synergies: A-train and IASI

BAMS, May 2012 : METEOROLOGICAL EDUCATION AND TRAINING USING A-TRAIN PROFILERS

25/6/2010 13:30

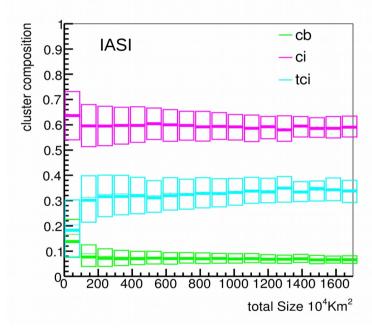



Data synergies with A-train allows to parametrize

- Vertical structure (CALIPSO-CLOUDSAT)
- Rain rate (AMSR-E) → convective core definition

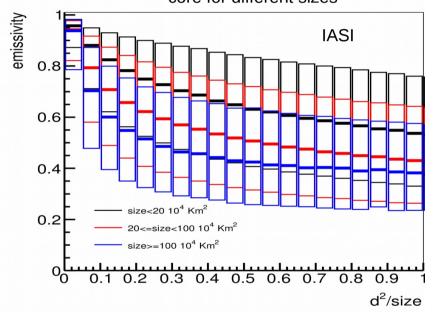
Cloud system statistics


*HCA → **H**igh (P-Ptropo <250 hPa) **C**loud **A**mount


Core $\varepsilon_{cld} > 0.98$	Multi-core	single-core	No core
Numb.of systems	<1%	<4%	~95%
coverage	~65%	~10%	~25%
Average size	~200*10 ⁴ Km ²	~10*10 ⁴ Km ²	~10 ⁴ Km ²

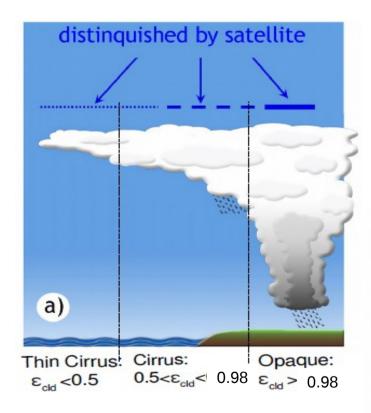
Non-convective Ci: ~25% of high cloud cover 50% of isolated Ci originate from convection (Luo & Rossow 2004, Riihimaki et al. 2012)

Cloud system composition

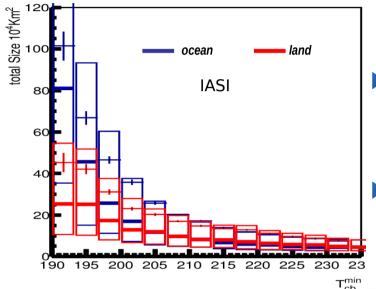

Convective systems represent ~ 75% of the total high cloud cover

- ~60% cirrus anvil and ~30% thin cirrus
- ► Fraction of thin cirrus increase with increasing system size

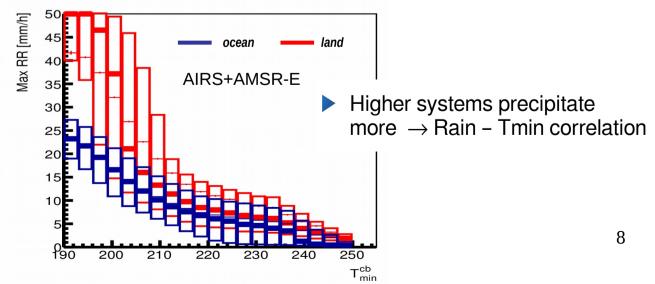
Emissivity as a function of normalized distance to the core for different sizes



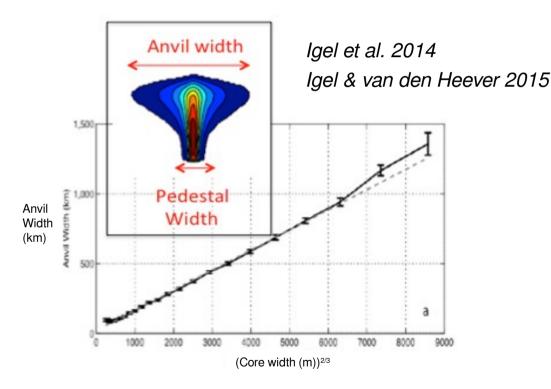
- ► In larger systems emissivity decreases faster
- Larger systems tend on average to have larger fraction of thin cirrus

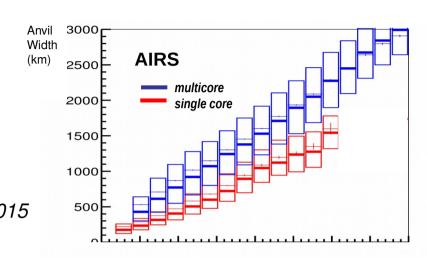

Proxies of convective strength (1)

large area of heavy rainfall


CloudSat-AMSR-E-MODIS (Yuan and Houze 2010)

min T in convective cores

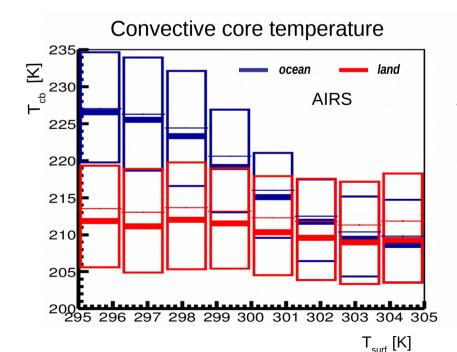

- Cirrus anvil size increases with decreasing Tmin in convective cores
- AIRS same behavior



Proxies of convective strength (2)

width of convective core

Convective cloud systems on CloudSat track


Cirrus anvil size increases with convective core width

- → slope stronger for multi-core systems
- → reasonal agreement betwee IASI and IARS

Cloud system properties and climate change

- Will Ci anvils decrease in a warming climate? How cloud properties and thus atm IR heating will be affected → large-scale circulation?
 - Several hypothesis to be tested: Thermostat (Ramanathan & Collins 1991), Humidistat (Stephens et al. 2004, Lebsock et al. 2010), IRIS effect (Lindzen et al. 2001)

Examine cloud behavior with increasing surface temperature

convection rises higher on ocean (T_{Cb} decreases) In agreement with Igel *et al. 2014* over ocean; so far no effect over land

- more detailed studies using both data sets& dynamical information needed
- Study el-ninio / la-ninia years

Summary

IR sounders are able to identify convective core, thick anvil & surrounding thin cirrus of mesoscale convective systems, using cloud emissivity

- ► High cloud convective systems are complex
 - → can be composed of several cores & represent ~75% of HC cover
- Convective systems are composed of:
 - ~10% convective core ~60% cirrus anvil and ~30% thin cirrus
- ► System size increases with convective strength (T_{cb}^{Min}, core size)
- ► IASI cluster's behavior compatible with AIRS results

International framework:

GEWEX group:

UpperTroposphericClouds&ConvectionPROcessEvaluationStudy:

Coordinated by: C. Stubenrauch and G. Stephens

AIM: to advance on understanding feedback of high-level clouds

1rst meeting Nov 2015 (Paris), next informal meetings during IRS 2016 conference (Auckland) & on the 29th April in Paris $_{11}$

Outlook

A-Train (AIRS-CALIPSO-CloudSat-AMSR-E):

- vertical structure of cloud types (as fct of distance to convective cores)
- comparison of proxies for convective strength

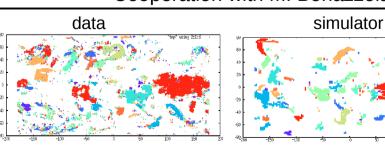
ISCCP-Meghatropiques-AIRS-IASI-TRMM:

life cycle of cloud systems

Meteorological reanalyses:

mesoscale winds

atmosph./cloud properties & radiative transfer model


→ cirrus heating rates

atosph./cloud properties & Lagrangian transport model

→ cirrus origin & evolution

Cooperation with M. Bonazzola

Simulator of AIRS high-altitude cloud systems for evaluation of different Convection schemes/microphysics in GCMs

