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Evolution of IR sounders

Instrument Year Sat. Channels Spec. resolution
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Evolution of IR sounders

Instrument Year Sat. Channels Spec. resolution
HIRS 1978 TIROS-N 19 + 1 3 to 40 cm−1

AIRS 2002 Aqua 2,378 0.25 to 1 cm−1

IASI 2006 Metop 8,461 0.25 cm−1

CRIS 2011 JPSS 1,305 0.625 cm−1
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AIRS 2002 Aqua 2,378 0.25 to 1 cm−1

IASI 2006 Metop 8,461 0.25 cm−1

CRIS 2011 JPSS 1,305 0.625 cm−1

IASI-NG 2021 Metop-SG 16,921 0.125 cm−1

IRS 2021 MTG 1,738 0.625 cm−1
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Observations used by NWP models

Data from IR
sounders are the
most used by NWP
models in terms of
number
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Observations used by NWP models

Data from IR
sounders are the
most used by NWP
models in terms of
number

IASI MTG-IRS
Spectral sampling 0.25 cm−1 0.625 cm−1

Samples per spectrum 8,461 1,808
Spatial sampling at nadir 12 km 4 km
Samples per hour 54,000 8.0 106
Estimation of data volume 0.92 GB/h 28 GB/h

(Atkinson, 2013)
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Consequences of the huge data volumes

I Atmospheric profiling errors are improved
I More chemical compounds can be profiled

I Data dissemination becomes impossible (costs) and data storage needs explose
I Inter-channel redundancy becomes more and more important. NWP center keep just

500 IASI channels from the 8461
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For IASI, the best performances were obtained using Principal Component Analysis (PCA) plus
residuals quantisation
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The PCA compression technique

PCA definition
PCA allows the reduction of the dimensionality of a problem by examining the
linear relationship between all the variables contained in a multivariate dataset

I The original set of correlated variables, yobs , is replaced by a smaller number of uncorrelated
variables called principal component scores (PCS, xpcs). A corresponds with the eigenvectors
matrix :

xpcs = A ∗ yobs

I To return to the original space it is only need to make the following multiplication :

ypcs = AT ∗ xpcs

I These new variables retain most of the information contained in the original dataset (most of
the gaussian noise is filtered) :

Page 6/21 J. Andrey-Andrés et al.- Assimilation of RRs IASI conference, Antibes, 13/04/2016



,

The PCA compression technique

PCA definition
PCA allows the reduction of the dimensionality of a problem by examining the
linear relationship between all the variables contained in a multivariate dataset

I The original set of correlated variables, yobs , is replaced by a smaller number of uncorrelated
variables called principal component scores (PCS, xpcs). A corresponds with the eigenvectors
matrix :

xpcs = A ∗ yobs

I To return to the original space it is only need to make the following multiplication :

ypcs = AT ∗ xpcs

I These new variables retain most of the information contained in the original dataset (most of
the gaussian noise is filtered) :

Page 6/21 J. Andrey-Andrés et al.- Assimilation of RRs IASI conference, Antibes, 13/04/2016



,

The PCA compression technique

PCA definition
PCA allows the reduction of the dimensionality of a problem by examining the
linear relationship between all the variables contained in a multivariate dataset

I The original set of correlated variables, yobs , is replaced by a smaller number of uncorrelated
variables called principal component scores (PCS, xpcs). A corresponds with the eigenvectors
matrix :

xpcs = A ∗ yobs

I To return to the original space it is only need to make the following multiplication :

ypcs = AT ∗ xpcs

I These new variables retain most of the information contained in the original dataset (most of
the gaussian noise is filtered) :

Page 6/21 J. Andrey-Andrés et al.- Assimilation of RRs IASI conference, Antibes, 13/04/2016



,

The PCA compression technique

PCA definition
PCA allows the reduction of the dimensionality of a problem by examining the
linear relationship between all the variables contained in a multivariate dataset

I The original set of correlated variables, yobs , is replaced by a smaller number of uncorrelated
variables called principal component scores (PCS, xpcs). A corresponds with the eigenvectors
matrix :

xpcs = A ∗ yobs

I To return to the original space it is only need to make the following multiplication :

ypcs = AT ∗ xpcs

I These new variables retain most of the information contained in the original dataset (most of
the gaussian noise is filtered) :

yobs = A ∗ xpcs + residuals = ypcs + residuals
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An example of PCA compression for a single channel. . .

IASI channel 1191, @942.5 cm−1 ⇒
Surface channel
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An example of PCA compression for a single channel. . .

IASI channel 1191, @942.5 cm−1 ⇒
Surface channel

IASI
France
overpass
20130806

IASI raw radiances (RAD) IASI reconstructed radiances (RR)
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An example of PCA compression for a single channel. . .

IASI channel 1191, @942.5 cm−1 ⇒
Surface channel

IASI
France
overpass
20130806

IASI raw radiances (RAD) Differences in BT ! !
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How can we assimilate PCA compressed data

1. We can use reconstructed radiances from PCs. . .
+ No much work to adapt current assimilation systems
+ Channel noises are filtered by PCA
- Interchannel correlations are heavily increased (and we use a diagonal R matrix. . . )

2. We can assimilate PCs directly
+ We can use all the information registered in the observation
- More difficult to understand. PCs are a mathematical representation
- Some PCs Jacobians present structures peaking low and high in the atmosphere ⇒ What
happen for low-top models ?

(McNally (2013))
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Météo France AROME NWP model

AROME-OPER AROME-EXP
Mesh grid 1.3 km 1.3 km
Assim. cycle 1h 3h
Levels 90 60/90L
Model top 10 hPa 1/10 hPa
IASI px assim 1/8 all
IASI ch assim 44 up to 123 ? / 44
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Some more details on the experiments. . .

I Impact on a low-top model : Old
and New AROME vertical
resolutions have been chosen to
test

I Assimilation of both RAD and RR
IASI EUMETSAT data

RR RAD
90L B5MJ/B5NQ B5ML/B5OV
60L B5MK/B5OS B5J3/B5OX

I Period of study : 20141108 to 20141208
I B matrix from Adaptation Dynamique (P. Brousseau)
I BC from ARPEGE global model uses RAD ! ! !
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Some more details on the experiments. . .

I Impact on a low-top model : Old
and New AROME vertical
resolutions have been chosen to
test

I Assimilation of both RAD and RR
IASI EUMETSAT data

RR RAD
90L B5MJ/B5NQ B5ML/B5OV
60L B5MK/B5OS B5J3/B5OX

I Period of study : 20141108 to 20141208
I B matrix from Adaptation Dynamique (P. Brousseau)
I BC from ARPEGE global model uses RAD ! ! !

In this presentation only the impact of using RR is shown.
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Used IASI observations

Impact of assimilate RR instead of RAD
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RR and RAD observation error correlation matrices
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Temporal evolution of assimilation statistics - ch 2701

 40

 400

 10

 100

 1000
 0  0.5  1

P
re

s
s
u

re
 [

h
P

a
]

Weighting function

2701 channel

Channel 2701

-1.0

 0.0

 1.0

08/Nov 15/Nov 22/Nov 29/Nov 06/Dec

A
N

 d
e

p
a

rt
. 

[K
]

 RR90 Bias

 RAD90 Bias

 RR90 Std.dev

 RAD90 Std.dev

-1.0

 0.0

 1.0

 2.0

 3.0
F

G
 d

e
p

a
rt

. 
[K

]    1

  10

 100

1000

 0
 20
 40
 60
 80
 100

#
 o

b
s
 u

s
e

d

%
 c

lo
u

d
y
 p

x

 RR90 #Obs  RR90 %cld

Page 13/21 J. Andrey-Andrés et al.- Assimilation of RRs IASI conference, Antibes, 13/04/2016



,

Impact in other satellite observations

AMSU-A
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RR vs RAD, RMS profiles, 3h forecast term
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RR vs RAD, RMS profiles, 12h forecast term
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RR vs RAD, RMS profiles, 24h forecast term
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Probabilistic control of precipitation at 24h (RR24)

0 H forecast term,
1.3 km neighbourhood

FRANGP0025 domain
BSS_NO as a function of
threshold
Période 20141109 - 20141208
BDCLIMQ Reference
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Probabilistic control of precipitation at 6h (RR6)

Different forecast
terms,
10 mm precipitation
threshold

FRANGP0025 domain
BSS_NO as a function
of neighbourhood
Période 20141109 -
20141208
BDCLIMQ Reference
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Impact of RR in ARPEGE global model

rms RH profiles [0.5 %] rms Geopotential profiles [5 m] rms Wind profiles [1 m/s]
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Impact of RR in ARPEGE global model
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Impact of RR in ARPEGE global model

rms RH profiles [0.5 %] rms Geopotential profiles [5 m] rms Wind profiles [1 m/s]

Positive impact when using RR (VarBC for IASI)
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Conclusions

I Different studies are being carried out at MF on the assimilation of IR hyperspectral
PCA compressed data in a low-top non-hydrostatic mesoscale model

I There are two possibilities to assimilate IR hyperspectral PCA compress data : RR and
PCs

I Assimilating RR is as simple as assimilating RAD but channel noises are reduced and
interchannel correlation is increased

I Results present almost non difference between RAD and RR assimilations (Using a
diagonal R-matrix, RAD bias correction from ARPEGE, and same RAD and RR channel
selection)

I Worst results in precipitation scores but possibly caused by a bad BC ?
I Positive impact of RR in MF ARPEGE global model
I Impact of RR in AROME with a proper BC will be analysed after this IASI conference
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