Reconstruction of flux and altitude of volcanic SO₂ emissions from IASI satellite observations: implications for volcanological and atmospherical studies

M. Boichu¹, L. Clarisse², I. J.-C. Péré¹, H. Herbin¹, P. Goloub¹, F. Thieuleux¹, D. Khvorostyanov³, F. Ducos¹, C. Clerbaux^{2,4}, D. Tanré¹

1- Laboratoire d'Optique Atmosphérique, Université Lille 1, CNRS; 2- Spectroscopie de Université Libre de Bruxelles 3- Laboratoire de Météorologie Dynamique, IPSL; 4- LATMOS, IPSL

1 – Flux of SO₂ emissions

2 – Altitude of SO₂ emissions

Presently, what do we know about volcanic SO₂ flux emissions?

Every ~ 12 hours

Ground-network of UV-DOAS scanning spectrometers (Etna)

How to characterise volcanic gas emissions at high temporal resolution from satellite imagery?

Boichu et al., ACP, 2013 Boichu et al., GRL, 2014

Reconstructing volcanic emissions by inverse modelling

d for data

Needs a description of :

- Transport/mixing
- Diffusion
- Deposition
- Wet scavenging
- Chemistry...

m for model

... from the volcano to the observation point!

Forward model: d = G m

Inverse problem: $m^* = G^{-g} d$

A posteriori prediction: $d^* = G m^*$

G: CHIMERE regional chemistry-transport model

- Eulerian model
- Grid: dx = dy = 20 km horizontal resolution
- 29 vertical layers up to 150 hPa (~ 14 km)
- Forced with WRF meteorological fields

IASI (Infrared Atmospheric Sounding Interferometer)

- Abord the polar-orbiting MetOp-A
- Infrared (645 cm−1 to 2760 cm −1)
- ⇒ 2 overpasses per day at Equator (9h30; 21h30 LT)
- Spatial resolution : (12 km x 12 km) pixel at nadir

Reconstruction of volcanic SO₂ flux emissions at high temporal resolution

Eyjafjallajökull 2010

IASI SO₂

WRF/CHIMERE SO₂

Inverse modelling

Boichu et al., ACP, 2013; GRL, 2014

1 – Flux of SO₂ emissions

Forecast of the SO₂ cloud dispersal

Eyjafjallajökull 2010

Forecast at + 12h

Boichu et al., GRL, 2014

WRF/CHIMERE chemistry-transport model

Calibration/Validation with ground UV observations

Ground-network of 9 UV-DOAS scanning spectrometers

Salerno et al., 2008

Etna, April 2011

IASI SO₂ load

Boichu et al., ACP 2015

Volcano monitoring: precautions to take in the interpretation of ground-based UV-observations for hazard assessment

Atmosphere: Re-assessment of the global budget of volcanic emissions (SO₂, CO₂, H₂S, HCl, HF, etc...)?

2 – Altitude of SO₂ emissions

Reconstructing the altitude of SO₂ emissions under wind shear conditions

Direct model

Etna 2011

Boichu et al., ACP, 2015

High variability of far-range altitude of SO₂

Boichu et al., ACP, 2015

Toward the assimilation of IASI SO₂ altitude

IASI SO₂ altitude (km)

Boichu et al., ACP, 2015

Next step:

Assimilation of IASI SO₂ altitude to reconstruct the altitude of SO₂ emissions In any meteorological conditions (no more wind shear pre-requisite)

Conclusions regarding SO₂ emissions

1- FLUX:

Tools at hand to describe the whole range of volcanic SO₂ degassing behaviours with a high temporal resolution (ground/satellite synergy is possible using inverse modelling schemes)

2- ALTITUDE of INJECTION:

Reconstruction of the altitude of SO₂ emissions by inverse modelling under wind shear conditions, but soon in any meteorological conditions! (thanks to the assimilation of recently-developed IASI SO2 altitude products)

Perspective: formation and lifecycle of sulfate aerosols

High temporal variability of volcanic SO₂ emissions (flux and altitude): toward a better modelling of sulfate aerosol production and lifecycle

=> impact of volcanism on climate and air quality

Remote sensing of volcanic sulfate aerosols using spaceborne LIDAR observations

Etna 2011

CALIOP lidar

Modelled SO2
using WRF/CHIMERE
chemistry-transport model
initialised with
reconstructed emissions

Latitude

Boichu et al., ACP, 2015

Coexistence of tropospheric SO₂ and sulfate aerosols

CALIOP lidar

Color ratio

Depolarisation ratio

Total attenuated backscatter signal

Boichu et al., ACP, 2015

Major eruption of Mt. Etna, December 2015

Thank you for your attention

Boichu et al., ACP 2015