L. Larrabee Strow, Sergio De Souza-Machado, and Steven Buczkowski

UMBC
Department of Physics *and*Joint Center for Earth Systems Technology

IASI 2016 Antibes Juan-les-Pins

Overview

Hyperspectral Sensors Becoming Climate Sensors

- AIRS (+CrIS): 13 → 35 years (JPSS 3+4 approved)
- IASI 9 \rightarrow 30+?
- Years of overlap already to connect sensors
- Direct overlap not needed: For example can use IASI to transfer between AIRS and CrIS!

Climate Requirements/Users

- Can Level 2 provide accurate Level 3 climatologies?
- How provide error characterization and traceability?
- Data processing should be as simple as possible so reproducible by others (and is widely understood).
- Open source

Hyperspectal IR has outstanding radiometric accuray, even better stability, and should greatly enchance climate trending of T(z), H2O(z), surface T and emissivity, etc.

Scientific Questions

- T(z), H₂O (z), O₃, and longwave cloud forcing trends
- H₂O feedback from warming
- Cloud feedback?
- Etc.

Introduction

At present: compare trends to other popular approaches (microwave, sondes)

Soon: Begin answering the above questions, but how?

And: Ensure that the individual researcher can stay involved in climate research with hyperspectral data at the radiance level

Anomalies

Climate Variability and Measurement Accuracy

AIRS+CrIS: 13+ Years

- Work by S. Leroy shows transition after ~ 12 years
- After which instrument accuracy/stability is dominant error source
- Are the instrument labels correct??
- AIRS stability ~ 0.003K/year?
- Hepplewhite Poster: AIRS +
 CrIS SNO difference stats
 imply "stiching" to well below
 0.01K
- Hepplewhite Poster: Convert AIRS to CrIS ILS for radiance time series

Existing Retrieval Frameworks

- Retrieval (Weather oriented approach)
 - 1) First guess: Neural Net (NN), climatology, microwave
 - L1b converted to cloud-cleared radiances (L2cc), sometimes biased cold
 - 3) Minimize L2cc RTA(Level 2). No closure.
 - 4) 70-80% yield

Introduction

- 5) Note: NN trained on several months ECMWF with fixed CO₂.
- 2 Level 2 averaged to Level 3 (AIRS). IASI??

OK for Climate Trending?

- Neural Net and cloud-clearing errors hard to characterize
- Influence of a-priori information often unknown
- Scene-dependent sampling
- No radiance closure!
- AIRS: L2 vertical kernel functions too narrow for AIRS (comes from NNet)

An Alternative Retrieval Path for Climate *Trending*

Two Approaches

Introduction

- Derive trends and anomalies in radiance space, then retrieve geophysical variables
- 2 Examine trends in Probablity Distribution Functions (PDFs) of single channels to focus on extremes.

Level 3 anomalies (and rates) are generally what the community wants for understanding trends.

Radiance Based Trending

Introduction

- Operate in radiance space as long as possible (error traceability)
- Lower data volumes (1-2%)
- Data averaging (gridded, zonal)
- Adopt OE retrieval framework with scattering RTA for conversion of radiance trends/anomalies to geophysical variables.
- A-priori state for trends is *zero*. (Jacobians evaluated at the mean state).
- Using a L1-type Tikhonov empirical smoother combined with an estimated (but loose enough) a-priori covariance.

13-year T(z), $H_2O(z)$ anomalies (zonal) can be processed in 1-2 hours on 40 cpu cores! (Years to test AIRS V6 Level 3!). Linear zonal rates just take a minute to run on 100 layers.

Small data set for use by a larger community

IntroductionApproachRadiance TrendsRetrievalsAnomalies00000000000000000000000000

Radiance Time Series and Anomalies

- Data Set: 8461 channels by 40 zonal bins
- Fit to a constant, a time derivative, and annual sinusoid plus first 3 harmonics.
- Generate jacobians (from ERA or mean BT retrievals)
- Retrieve geophysical rates and anomalies from radiance rates and anomalies.

Example: IASI dBT/dt for 8 Years for 55 Deg. North

Introduction

Changes to IASI L1c algorithm changed ringing. From now on we will use averages of adjacent IASI channel for all retrievals.

Compare IASI to AIRS 8-Year Trends: GLOBAL

Introduction

Larger latitudinal variability, but only 8 years. 2σ uncertainty \sim 0.025K in window region for both

Variation in Trend Uncertainty over Time

Trend uncertainty for AIRS going below 0.01K/year, reaching climate regime?

Careful work needed to determine instrument stability (using CO₂ and SST) and accuracy of inter-instrument calibration!

(Serial correlation not included, 650-750 cm⁻¹ will be 2-3x larger)

IntroductionApproachRadiance TrendsRetrievalsAnomalies0000000000000000000000000000

Retrievals: Switch to AIRS for Now

We match every scene to ERA, convert ERA clouds to 2-slabs (water, ice), and use with ERA T(z), $H_2O(z)$, T_{surf} to generate our simulation set. We also use these 2-slab clouds in Jacobians to retrieve profile trends.

AIRS 13-Yr T(z) Trends: (Obs Uncertainty only 0.001K/Year Drift)

AIRS 13-Yr T(z) Trends: (Obs Uncertainty only 0.001K/Year Drift)

Introduction

AIRS 13-Yr H₂O (z) Trends: (Obs Uncertainty only 0.001K/Year Drift)

Simulated ERA (fraction/year)

Introduction

Anomalies

AIRS 13-Yr H₂O (z) Trends: (Obs Uncertainty only 0.001K/Year Drift)

IntroductionApproachRadiance TrendsRetrievalsAnomalies000000000000000000000

AIRS 13-Yr Linear Temperature Trends w/ Obs Errors

Tropospheric heating, stratospheric cooling. Tropical stratospheric heating quite small. Uncertainties $\sim\!0.005 \, \text{K/yr}$ BUT diagonal obs error matrix.

The AIRS Level 3, ERA temperature products are not amenable to this type of analysis.

AIRS 13-Yr Linear H₂O Trends w/ Obs Errors

UMBC (fraction/year).

 $\mathsf{ERA} \times \mathsf{AK}$

13-Year Ozone Trends?

Roughly same rates as Sciamachy for 2000-2010, including latitude dependence in stratosphere.

Are the ERA O₃ profiles good enough for our Jacobian evaluations?

Window Channel Rates and Surface T Retrievals

Our mid-latitude surface temperature rates are quite high?

The fix: Separate retrievals in a subset of clear, less clear, full clouds. First results recently done and are encouraging.

Cloud Trends: Very Preliminary

Is amount/size correlation reasonable? Water cloud changes extremely small.

IASI 8-Year T Rates: CO₂ + CH₄ fixed at in-situ values

Introduction

IASI Very Sub-Optimal

- Roughly every 8th channel used
- A-Priori covariance and L1 smoothing not tuned
- We forgot and added in shortwave (unlike AIRS!)
- O-F residuals large for some latitudes

IASI 8-Year H₂O Rates:

- AIRS and IASI more similar than either with ERA
- Same fits as for T(z), so same liens
- Short time periods more sensitive to inter-annual
- AIRS and IASI O₃ almost identical

27N to 30N Zonal Temperature Anomalies

AIRS Level 3 (K)

Introduction

ERA × averaging kernel (K)

27N to 30N Water Vapor Anomalies

Introduction

AIRS Level 3 (frac/year)

ERA × avg kernel (frac/yr)

Liens on IASI Radiances

Introduction

- Mean difference between FOV2 and FOV4
- \sim 6 ppm Δv in longwave
- ullet FOV-dependent v scales in band overlap regions cause distortion
- Only in IASI-1! Gone in IASI-2.
- Mostly easy to correct, or leave as is if keep uniform mix of all FOVs.
- Assume LW ν differences due to detector x,y location errors?

Radiance Offsets

Chan 330, Bias (FOV2-FOV4)

Bias Chan 8072 - Chan 8073 for FOV-1

Offsets appear at different dates.

Conclusions

- AIRS, and soon IASI, lifetimes are reaching climate timescales
- A new radiance-based approach for hyperspectra IR climate products appears promising
- Low storage
- Mission reprocessing can be done in an hour
- Approach simple compared to L2 with less A-priori "bleed-through". Our L3 trends constrained by retrieval, unlike L3 derived from L2 products.
- Provides error estimates (more work needed on this)
- We plan to connect AIRS + CrIS, both to IASI in radiance space (using CrIS ILS). (See Heppleworth poster)

The "Hiatus" (using anomaly retrievals shown later)

I used 200 to 950 mbar retrievals.

The "Hiatus": Need Vertical Resolution

PRELIMINARY: Incomplete Error Analysis

Introduction

- Karl: 2000-2014 gets 0.0116 ± 0.0067 K/year (1 sigma!). This is surface air.
- Christy: Almost zero during Hiatus. This is tropospheric average.
- Just for kicks, what do we get?
 - ullet 950-200 mbar: -0.004 K/year \pm 0.018/2 K/year?? (1 σ)
 - ullet 950-700 mbar: +0.006 K/year \pm 0.018/2 K/year?? (1 σ)
- The point is not the absolute numbers (although they are interesting) but that (a) we are in the ballpark with a very very simple and easy approach, and (b) we have vertical sensitivity
- So, maybe everybody is right?