

Defining IASI as the Infrared Anchor Reference for the Global Space-based Inter-Calibration System (GSICS)

- 1. Introducing GSICS
- 2. GSICS Corrections for Meteosat IR channels
 - Uncertainty analysis
- 3. Prime GSICS Corrections
 - Merging results from multiple references
 - Anchor Reference Concept
- 4. Reference Instrument Selection Criteria
 - Scoring Scheme
- 5. Inter-comparison of Reference Instruments
- 6. Conclusions

Global Space-based Inter-Calibration System

What is GSICS?

- Global Space-based Inter-Calibration System
- Initiative of CGMS and WMO
- Effort to produce consistent, well-calibrated data from the international constellation of Earth Observing satellites

What are the basic strategies of GSICS?

- Improve on-orbit calibration by developing an integrated inter-comparison system
 - Initially for GEO-LEO Inter-satellite calibration
 - Being extended to LEO-LEO
 - Using external references as necessary
- Best practices for calibration & characterisation

This will allow us to:

- Improve consistency between instruments
- Reduce bias in Level 1 and 2 products
- Provide traceability of measurements
- Retrospectively re-calibrate archive data
- Better specify future instruments

ISRO

ROSHYDROMET

CNAA

NASA

9

wmo

JAXA

FSA

IMD

NIST

GSICS Principles

- Systematic generation of inter-calibration products
 - for Level 1 data from satellite sensors
 - to compare, monitor and correct the calibration of monitored instruments to community references
 - by generating calibration corrections on a routine operational basis
 - with specified uncertainties
 - through well-documented, peer-reviewed procedures
 - based on various techniques to ensure consistent and robust results

Delivery to users

- Free and open access
- Adopting community standards

To promote

- Greater understanding of instruments' absolute calibration, by analysing the root causes of biases
- More accurate and more globally consistent retrieved L2 products
- Inter-operability for more accurate environmental, climate and weather forecasting products

TRACEABILITY /
UNBROKEN
CHAINS OF
COMPARISONS

- 1. Introducing GSICS
- 2. GSICS Corrections for Meteosat IR channels
 - Uncertainty analysis
- 3. Prime GSICS Corrections
 - Merging results from multiple references
 - Anchor Reference Concept
- 4. Reference Instrument Selection Criteria
 - Scoring Scheme
- 5. Inter-comparison of Reference Instruments
- 6. Conclusions

- Simultaneous near-Nadir Overpasses
 - of one GEO imager and one LEO sounder
- Select Collocations
 - Spatial, temporal and geometric thresholds

Schematic illustration of the geostationary orbit (GEO) and polar low Earth orbit (LEO) satellites and distribution of their collocated observations.

- Simultaneous near-Nadir Overpasses
 - of one GEO imager and one LEO sounder
- Select Collocations
 - Spatial, temporal and geometric thresholds
- Spectral Convolution:
 - Convolve LEO Radiance Spectra with GEO Spectral Response Functions
 - to synthesise radiance in GEO channels

Example radiance spectra measured by IASI (black), convolved with the Spectral Response Functions of SEVIRI channels 3-11 from right to left (colored shaded areas).

- Simultaneous near-Nadir Overpasses
 - of one GEO imager and one LEO sounder
- Select Collocations
 - Spatial, temporal and geometric thresholds
- Spectral Convolution:
 - Convolve LEO Radiance Spectra with GEO Spectral Response Functions
 - to synthesise radiance in GEO channels
- Spatial Averaging
 - Average GEO pixels in each LEO FoV
 - Standard Deviation of GEO pixels as weight

LEO FoV~10km

~ 3x3 GEO pixels

Illustration of spatial transformation.

Small circles represent the GEO FoVs and the two large circles represent the LEO FoV for the extreme cases of

FY2-IASI, where nxm=3x3 and SEVIRI-IASI, where nxm=5x5.

- Simultaneous near-Nadir Overpasses
 - of one GEO imager and one LEO sounder
- Select Collocations
 - Spatial, temporal and geometric thresholds
- Spectral Convolution:
 - Convolve LEO Radiance Spectra with GEO Spectral Response Functions
 - to synthesise radiance in GEO channels
- Spatial Averaging
 - Average GEO pixels in each LEO FoV
 - Standard Deviation of GEO pixels as weight
- Weighted Regression of LEO v GEO rads
 - Evaluate Bias for Standard Radiance Scene
 - Regression coefficients with uncertainty
- GSICS Correction = Function
 - to convert level 1 data to be consistent with calibration of reference
 - Re-Analysis (symmetric time window)
 - Near Real-Time (asymmetric time window) alternative cal coefficients in L1.5 HDR

Weighted linear regression of $L_{\text{GEO}|\text{REF}}$ and $<\!L_{\text{GEO}}\!>$ for Meteosat-9 13.4 μ m channel based on single overpass of IASI

- 1. Introducing GSICS
- 2. GSICS Corrections for Meteosat IR channels
 - Uncertainty analysis
- 3. Prime GSICS Corrections
 - Merging results from multiple references
 - Anchor Reference Concept
- 4. Reference Instrument Selection Criteria
 - Scoring Scheme
- 5. Inter-comparison of Reference Instruments
- 6. Conclusions

Introducing Prime GSICS Corrections

- Define one Anchor GSICS Reference
 - For each spectral band/application
 - By consensus agreement within GSICS
- Use others as *Transfer References*
- Blend corrections from all references
 - After modifying Corrections to Anchor GSICS Reference
- Ensures long-term continuity
 - Without calibration jumps
- Ensures Traceability
 - back to single Anchor Reference
- Simplifies users' implementation

Simple Weighting of Each Reference

Correcting the Corrections & Blending References

Users' Application of Prime GSICS Correction

- 1. Introducing GSICS
- 2. GSICS Corrections for Meteosat IR channels
 - Uncertainty analysis
- 3. Prime GSICS Corrections
 - Merging results from multiple references
 - Anchor Reference Concept
- 4. Reference Instrument Selection Criteria
 - Scoring Scheme
- 5. Inter-comparison of Reference Instruments
- 6. Conclusions

Reference Instrument Selection Criteria

- Most basic requirements are essential properties:
 - Is it available for the date in question?
 - Does it cover at least part of the spectral range?
 - Does it generate sufficient collocations?
 - Is its calibration sufficiently stable?
 - Can it transfer the calibration to other Reference sensors?
- Additional desirable requirements
- reflect reduced uncertainties in inter-calibration,
- up to a saturation point:
 - Does it cover the full spectral range?
 - At sufficiently high spectral resolution?
 - Is the full supporting documentation published?
 - Is it routinely monitored against other Reference sensors?
 - Does it belong to a committed series of sensors?

Draft Scoring Scheme

		Thres	hold	Satur		
	Unit	Min	Max	Min	Max	Weight
Date Range	Year	2015	2015	2006	2030	10
Spatial Coverage: Lat	deg	-10	10	-90	90	1
Spatial Coverage: Lon	deg	-10	10	-180	180	1
Dynamic Range	K	270	300	180	330	2
Spectral Range SWIR	μm	3.75	3.92	3.48	4.36	2.2
Spectral Range MWIR	μm	6.25	7.35	5.35	7.85	2.6
Spectral Range LWIR	μm	8.70	13.40	8.30	14.40	5.2
Geometric Range: VZA	deg	5	15	0	90	2
Diurnal Coverage	hr	9	10	0	12	10
# Collocations	/d	1		10000		4
Spatial resolution	km		100		10	0
Spatial sampling	km		100		10	1
Geolocation accuracy	km		10		0.1	5
Radiometric Stability	K/yr		1		0.001	10
Radiometric Noise	K		10		0.1	1
Uncertainty from SBAF	K		1		0.01	10
Spectral Resolution	cm-1		100		0.5	0
Spectral Stability	cm-1/yr		2		0.01	0
Absolute Cal Acc	K		1		0.001	10
Total						100.0

Draft Scores for GSICS GEO-LEO IR NRTC

		Threshold		Saturation			Metop/IASI		Aqua/AIRS		SNPP/CrIS (in FSR mode)		NOAA/HIRS/2	
	Unit	Min	Max	Min	Max	Weight	OK?	Score	OK?	Score	OK?	Score	OK?	Score
Date Range	Year	2015	2015	2006	2030	10	ОК	7.1	ОК	5.8	ОК	3.8	NOK	10.0
Spatial Coverage: Lat	deg	-10	10	-90	90	1	ОК	1.0	ОК	1.0	ОК	1.0	ОК	1.0
Spatial Coverage: Lon	deg	-10	10	-180	180	1	ОК	1.0	ОК	1.0	ОК	1.0	ОК	1.0
Dynamic Range	K	270	300	180	330	2	ОК	1.7	ОК	1.7	OK	1.7	ОК	1.7
Spectral Range SWIR	μm	3.75	3.92	3.48	4.36	2.2	ОК	1.6	ОК	1.2	NOK	1.1	ОК	1.4
Spectral Range MWIR	μm	6.25	7.35	5.35	7.85	2.6	ОК	2.6	ОК	1.4	OK	2.1	NOK	0.2
Spectral Range LWIR	μm	8.70	13.40	8.30	14.40	5.2	ОК	5.2	NOK	2.6	NOK	2.6	NOK	2.6
Geometric Range: VZA	deg	5	15	0	90	2	ОК	1.2	ОК	1.2	ОК	1.2	ОК	1.2
Diurnal Coverage	hr	9	10	0	12	10	ОК	2.8	ОК	2.8	ОК	2.8	ОК	2.8
# Collocations	/d	1		10000		4	ОК	4.0	ОК	4.0	ОК	4.0	ОК	4.0
Spatial resolution	km		100		10	0	ОК	0.0	ОК	0.0	ОК	0.0	ОК	0.0
Spatial sampling	km		100		10	1	ОК	0.4	ОК	0.7	ОК	0.6	ОК	0.4
Geolocation accuracy	km		10		0.1	5	ОК	0.2	ОК	0.2	ОК	0.2	ОК	0.2
Radiometric Stability	K/yr		1		0.001	10	ОК	0.2	ОК	0.2	ОК	0.2	ОК	0.2
Radiometric Noise	K		10		0.1	1	ОК	0.7	ОК	0.5	ОК	0.5	ОК	0.5
Uncertainty from SBAF	K		1		0.01	10	ОК	10.0	ОК	1.0	ОК	1.0	ОК	0.3
Spectral Resolution	cm-1		100		0.5	0	ОК	0.0	ОК	0.0	ОК	0.0	NOK	0.0
Spectral Stability	cm-1/yr		2		0.01	0	ОК	0.0	ОК	0.0	ОК	0.0	ОК	0.0
Absolute Cal Acc	K		1		0.001	10	ОК	0.2	ОК	0.2	ОК	0.2	ОК	0.0
Total						100.0	97%	52%	91%	37%	88%	36%	82%	39%

- 1. Introducing GSICS
- 2. GSICS Corrections for Meteosat IR channels
 - Uncertainty analysis
- 3. Prime GSICS Corrections
 - Merging results from multiple references
 - Anchor Reference Concept
- 4. Reference Instrument Selection Criteria
 - Scoring Scheme
- 5. Inter-comparison of Reference Instruments
- 6. Conclusions

GSICS GEO-LEO IR Double Differences

- Time series of Bias
 - in Meteosat-10/ SEVIRI IR13.4
 - wrt IASI-A
 - wrt IASI-B
 - For standard scene radiance (267K)
 - Over 3 yr overlap

- Ice contamination
- Range -0.4 to -2.7K
- Differences < 0.1K

MSG3/SEVIRI referenced with MetOpA/IASI [EUMETSAT][RAC][demo][2012/08/12 00:00:00][v03][IR134][267.0

MSG3/SEVIRI referenced with MetOpB/IASI [EUMETSAT][RAC][demo][2013/03/08 00:00:00][v03][IR134][267.01

Time series of Double Differences

No Obvious Trend in Any Channel! ⁽²⁾

Small differences in long-wave channels ⊗

Statistics of Double Difference Time Series

(MSG3-IASIA)-(MSG3-IASIB) Demo RAC Standard Bias over 2013-03/2016-02:

Channel	Double Difference Trend [K/yr]	Mean Double Difference [K]
IR3.9	-0.016 <u>+</u> 0.008	0.001 <u>+</u> 0.005
IR6.3	-0.003 <u>+</u> 0.015	-0.015 <u>+</u> 0.010
IR7.4	-0.002 <u>+</u> 0.010	0.002 <u>+</u> 0.007
IR8.7	0.002 <u>+</u> 0.008	0.000 <u>+</u> 0.006
IR9.7	-0.005 <u>+</u> 0.011	-0.027 <u>+</u> 0.007
IR10.8	0.004 <u>+</u> 0.009	-0.016 <u>+</u> 0.006
IR12.0	-0.009 <u>+</u> 0.009	-0.018 <u>+</u> 0.006
IR13.4	-0.011 <u>+</u> 0.008	-0.042 <u>+</u> 0.006

- No statistically significant trend
 - in any channel
- Within standard uncertainty of 10mK/yr
- Consistent results from other Meteosats Small, but significant difference
 - But larger uncertainties

- No statistically significant difference
 - between IASI-A and -B
 - in Short- and Mid-bands
 - in any channel
- - in long-wave band
 - Larger for colder scenes

IASI-A / IASI-B 2015 comparison: CNES SIC Tool

- Statistics on "quasi-SNOs" (50min delay, ~off-nadir)
- Focus on homogeneous and stable scenes, night,
 as many "A before B" as "A after B"

Results:

- Biases between 0 and ~0.1K
- Highest bias for long wavelengths
- → Very good cross calibration
- → Same behaviour as the previous years, no degradation
- → Shape in B1 under investigation

[Slide from Denis Jouglet, CNES

Radiance Dependence of IASI-A/B Double Difference

- (MSG3-IASIA)-(MSG-IASIB) larger for cold scenes
- Must be careful comparing results from different domains!
 - Mean ∆Tb from polar SNOs ≠ Mean ∆Tb from global QSNOs
 - Should compare in radiance bins
- Due to non-linearity differences?

Radiance-dependence of (MSG3-IASIA)-(MSG-IASIB) Double Difference

Error bars represent k=1 uncertainty on mean difference

Red diamond = standard scene

- 1. Introducing GSICS
- 2. GSICS Corrections for Meteosat IR channels
 - Uncertainty analysis
- 3. Prime GSICS Corrections
 - Merging results from multiple references
 - Anchor Reference Concept
- 4. Reference Instrument Selection Criteria
 - Scoring Scheme
- 5. Inter-comparison of Reference Instruments
- 6. Conclusions

Conclusions

- Metop-A/IASI used as reference for first operational GSICS product:
 - Inter-calibration corrections for IR channels of Meteosat/SEVIRI
- Extension of concept to merge results from multiple references
 - Correcting all to be consistent with one Anchor Reference Metop-A/IASI
 - Based on series of double-differences wrt SEVIRI
 - IASI-B and IASI-A calibration stable in all channels over 3 years
 - No significant differences in short- and mid- wave bands
 - Small differences in long-wave channels (<0.05K) Radiance-dependent
- Selection of Anchor reference based on coverage/performance
 - According to uncertainty contributions
 - To be supported by error budgets
 - Inter-comparisons of different reference instruments
- GSICS Infrared Reference Sensor Traceability & Uncertainty Report
 - Error Budgets, Traceability and Inter-Comparisons

Thank You!

