

Evolution of SST and XCO₂ in the summer ice free Arctic Ocean: is IASI able to contribute to climate change studies?

Claude Camy-Peyret⁽¹⁾, Jérôme Bureau⁽²⁾, and Sébastien Payan⁽²⁾

<claude.camy-peyret@upmc.fr>

- (1) IPSL (UPMC/UVSQ) Paris, France
- (2) LATMOS/IPSL, Paris, France

Outline

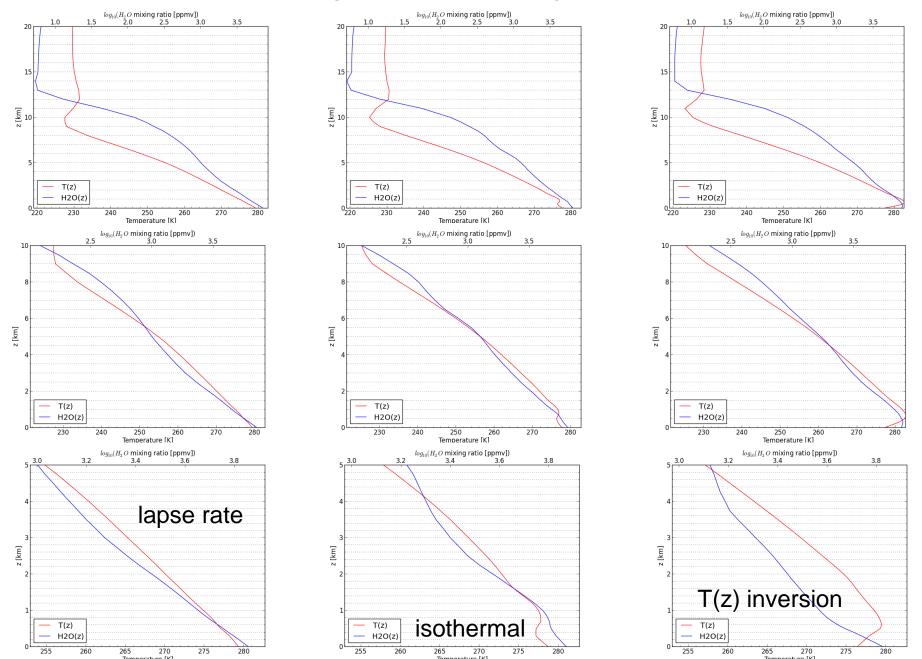
- Using the thermal infrared region (TIR) and IASI (MetOp) for ice free Arctic Ocean studies
- Retrieval scheme
- Sensitivity study as a function of T(z)
- Comparison between IASI-A and IASI-B, and with correlative measurements
- Monthly climatology of T_{surf} and XCO₂ for the period 2010 to 2015 in the 3 summer months
- Impact of IASI for climate studies

Why using IASI for Arctic Ocean studies?

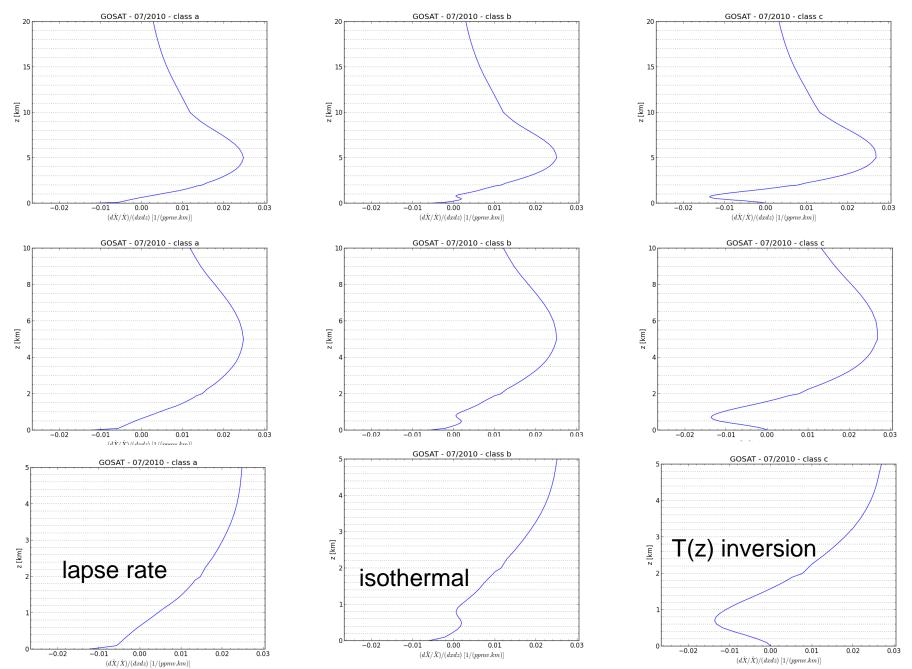
- The Arctic Ocean is a key region where the effect of climate change can be detected over short time periods → the IASI series will emcompass more than 15 years (3 very stable and very similar instruments covering the full thermal infrared region TIR)
- Other sounders (for CO₂ or CH₄) are dwelling on the SWIR region (GOSAT and OCO-2 currently) using solar reflected/backscattered light
- Hence only daytime observations are possible with an additional constraint on the solar zenith angle (SZA ≤ 70° usually, meaning poor coverage of the sub-polar regions)
- TIR sounders (IASI, AIRS, CrIS and GOSAT TANSO-FTS in B4) are achieving an all day global coverage (usually one daytime and one night time overpass)
- Their sensitivity to near surface concentrations is limited by the thermal contrast, but TIR sounders provide essential information in particular for the diurnal/nocturnal cycle and at high latitudes where models are poorly constrained by lack of observations

Why and how to compare IASI-A and IASI-B?

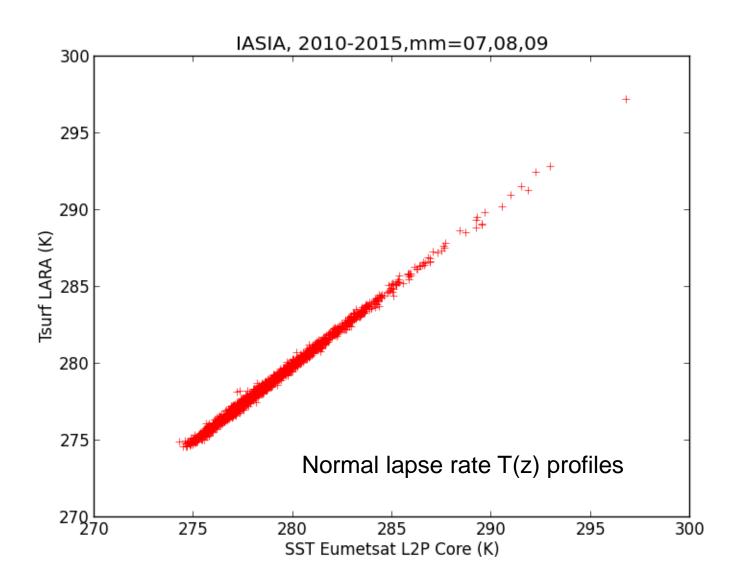
- It is interesting to compare spectra and retrieved geophysical parameters from the two TIR sounders to check their consistency → IFOVs over ice free open water are most favourable for this comparison (retrievals over ice pack are more complicated)
- IASI-A and IASI-B on MetOp-A and MetOp-B can view the same IFOV in the same geometry within a time difference between 40 min and 50 min
- Comparisons can be done for off-nadir observations and the choice of the polar summer period (July, August, September) lead mostly to daytime only observations in the latitude region [68N; 80N]
- The retrieved products T_{surf} and CO₂ will be considered here

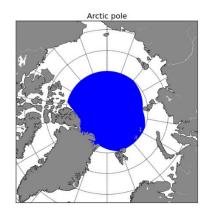

Retrieval scheme

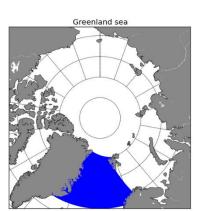
- The line-by-line LARA radiative transfer model (RTM)
 and its associated retrieval model (package,
 developed by J. Bureau and S. Payan) has been used
- Even though LARA can be configured for OEM, in the present study spectra where "least squares fitted" with a state vector containing T_{surf} and XCO₂ as well as multiplicative scaling factors for the vertical mixing ratio profiles of H₂O and O₃
- The temperature profile is taken from ECMWF product (and fixed)
- The emissivity of Masuda for sea water is used/fixed

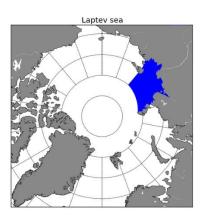

Window fitted and state vector

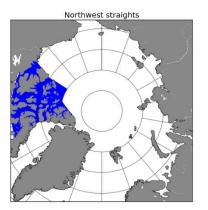
- Window: 940 980 cm⁻¹, "CO₂ laser band region"
- State vector: x=(T_{surf}, XCO₂, coeff_H₂O, coeff_O₃)
- Carmine Serio instrument full covariance matrix
- No a priori for T_{surf} and XCO₂, constant mixing ratio profile
- T(z) extracted from ECMWF ERA-Interim analyses
- H₂O(z) profile scaled from ECMWF ERA-I
- SF₆ fixed (including trend between 2010 and 2015)
- For checking the retrieval sensitivity to the shape of the actual T(z) profile, results are analysed according 3 classes of profiles: normal lapse rate, isothermal, temperature inversion

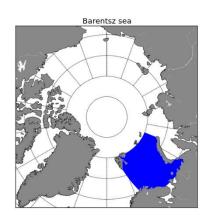

Temperature profile

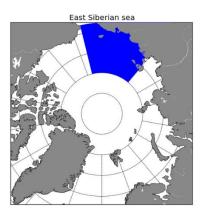

Sensitivity curves

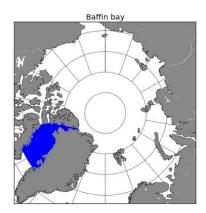


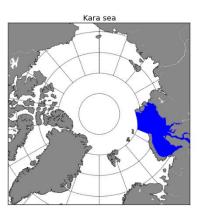

Comparisons of T_{surf} between IASI-A and L2P SST

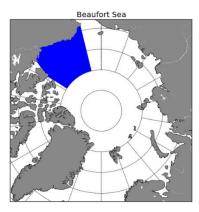


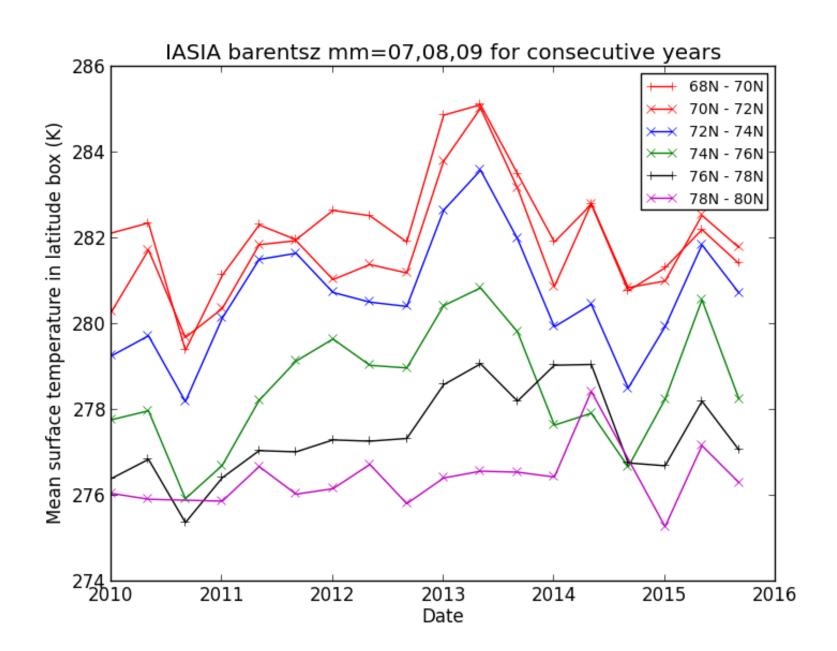

Basins considered for the Arctic Ocean

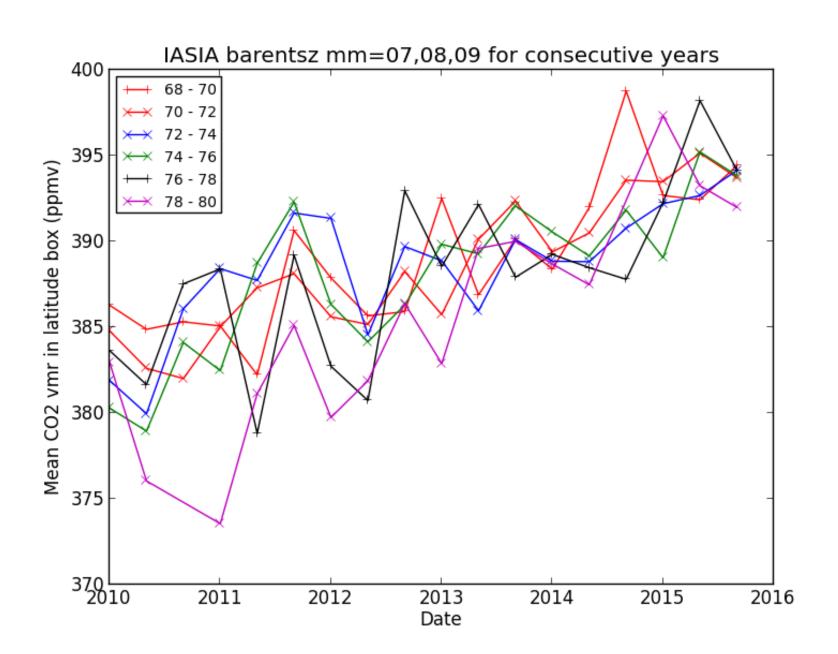












T_{surf} variation in the Barentsz basin of the Arctic Ocean

XCO₂ variation in the Barentsz basin of the Arctic Ocean

Time series for the variability/trend of T_{surf}

		IASI-A			IASI-B	
yyyymm	nb	<tsurf></tsurf>	month order	nb	<tsurf></tsurf>	month order
201007	250	279.32	09 < 07 < 08			
201008	392	279.68				
201009	587	277.60				
201107	364	279.70	09 < 07 < 08			
201108	420	279.90				
201109	565	278.45				
201207	305	279.56	09 < 07 < 08			
201208	526	279.90				
201209	595	278.69				
201307	276	279.62	09 < 07 < 08	299	280.07	09 < 07 < 08
201308	480	279.93		505	280.09	
201309	476	279.21		458	279.46	
201407	325	279.19	09 < 07 < 08	375	279.66	09 < 08 < 07
201408	525	278.96		560	279.21	
201409	611	277.98		579	278.37	
201507	355	280.07	09 < 08 < 07	342	280.86	09 < 08 < 07
201508	482	279.64		467	280.19	
201509	646	278.11		591	278.58	

Clear homogeneous IFOVs day, ice free Arctic Ocean [68N; 80N]

Only lapse rate cases

Average uncertainty on the mean ~ 0.5 K

nb = number of IFOVs for the average

Pluriannual variability of T_{surf} for summer months and IASI-A

yyyymm	nb	<tsurf></tsurf>	yearly order
201007	250	279.32	2014 < 2010 < 2012 < 2013 < 2011 < 2015
201107	364	279.70	
201207	305	279.56	
201307	276	279.62	
201407	325	279.19	
201507	355	280.07	> variation over 6 years +0.15 K
201008	392	279.68	2015 ~ 2010 < 2011 = 2012 < 2013 ~ 2014
201108	420	279.90	
201208	526	279.90	
201308	480	279.93	
201408	525	278.96	
201508	482	279.64	> variation over 6 years -0.04 K
201009	587	277.60	2010 < 2014 < 2015 < 2011 < 2012 < 2013
201109	565	278.45	
201209	595	278.69	
201309	476	279.21	
201409	611	277.98	
201509	646	278.11	> variation over 6 ans +0.51 K

Clear homogeneous IFOVs day, ice free Arctic Ocean [68N; 80N]

Only lapse rate cases

Average uncertainty on the mean ~ 0.5 K

nb = number of IFOVs for the average

No significant trend at this regional scale

Pluriannual variability of T_{surf} for summer months IASI-A/IASI-B

<ΔTsurf>[A-B]

IASI-B

IASI-Anb

yyyymm

IASI-A

IASI-B

		<tsurf></tsurf>	nb	<tsurf></tsurf>	SAISON [A B]			
						Clear		
201307	276	279.62	299	280.07	-0.55	homogeneous IFOVs day, ice free Arctic Ocean [68N; 80N]		
201407	325	279.19	505	279.66	-0.47			
201507	355	280.07	458	280.86	-0.79	Only lapse rate cases		
						Average uncertainty		
201308	480	279.93	375	280.09	-0.16	on the mean ~ 0.5 K		
201408	525	278.96	560	279.21	-0.25	nb = number of IFOVs for the average Overall consistency of the monthly trend		
201508	482	279.64	579	280.19	-0.55			
201309	476	279.21	342	279.46	-0.25	for the 3 years		
201409	611	277.98	467	278.37	-0.39	Possible small biais between the retrieved		
201509	646	278.11	591	278.58	-0.47	T _{surf} using the two sounders		

Time series for the variability/trend of CO₂

		IASI-A			IASI-B	
yyyymm	nb	<tsurf></tsurf>	month order	nb	<tsurf></tsurf>	month order
201007	250	386.26	07 > 09 > 08			
201008	392	383.02				
201009	587	384.42				
201107	364	383.58	09 > 07 > 08			
201108	420	383.36				
201109	565	385.24				
201207	305	385.93	09 > 07 > 08			
201208	526	384.28				
201209	595	387.16				
201307	276	391.10	07 > 09 > 08	299	390.07	07 > 09 > 08
201308	480	387.84		505	387.52	
201309	476	390.36		458	389.01	
201407	325	390.98	09 > 07 > 08	375	390.12	07 > 09 > 08
201408	525	389.72		560	389.16	
201409	611	392.33		579	390.01	
201507	355	392.62	09 > 07 > 08	342	392.09	09 > 07 > 08
201508	482	391.26		467	390.74	
201509	646	393.92		591	393.56	

Clear homogeneous IFOVs day, ice free Arctic Ocean [68N; 80N]

Only lapse rate cases

Average uncertainty on the mean ~ 0.5 ppmv

nb = number of IFOVs for the average

mm=08 i.e. August has the smallest XCO₂ in all years and for both sounders

Pluriannual variability of CO₂ for summer months and IASI-A

уууутт	nb	<co<sub>2></co<sub>	yearly order
201007	250	386.26	2011 < 2012 < 2010 < 2014 < 2014 < 2015
201107	364	383.58	-2.68
201207	305	385.93	+2.35
201307	276	391.10	+5.17
201407	325	390.98	-0.12
201507	355	392.62	+1.64> over 5 years +1.27 ppmv/yr
201008	392	383.02	2011 < 2010 < 2012 < 2013 < 2014 < 2015
201108	420	383.36	+0.34
201208	526	384.28	+0.92
201308	480	387.84	+3.56
201408	525	389.72	+1.88
201508	482	391.26	+1.54> over 5 years +1.65 ppmv/yr
201009	587	384.42	2010 < 2011 < 2012 < 2013 < 2014 < 2015
201109	565	385.24	+0.82
201209	595	387.16	+1.92
201309	476	390.36	+3.20
201409	611	392.33	+1.97
201509	646	393.92	+1.59> over 5 years +1.90 ppmv/yr

Clear homogeneous IFOVs day, ice free Arctic Ocean [68N; 80N]

Only lapse rate cases

Average uncertainty on the mean ~ 0.5 ppmv

nb = number of IFOVs for the average

Trend slightly less than the "standard" ~2 ppmv/yr

Arctic Ocean is a sink in summer?

Pluriannual variability of CO₂ for summer months IASI-A/IASI-B

уууутт	IASI-Anb	IASI-A <co<sub>2></co<sub>	IASI-B nb	IASI-B <co<sub>2></co<sub>	<ΔCO ₂ >[A-B]	Clear IFOVs Homogeneous	
201307	276	391.10	299	390.07	+1.03	day, ice free Arctic Ocean [68N ; 80N	
201407	325	390.98	505	390.12	+0.86	Only lapse rate cases	
201507	355	392.62	458	392.09	+0.53	Only lapse rate cases	
						Average uncertainty on the mean ~ 0.5 ppmv	
201308	480	387.84	375	387.52	+0.32	on the mean ~ 0.5 ppm	
201408	525	389.72	560	389.16	+0.56	nb = number of IFOVs for the average	
201508	482	391.26	579	390.74	+0.52	ioi iiio avolago	
						Overall consistency	
201309	476	390.36	342	389.01	+1.35	of the monthly trend	
201409	611	392.33	467	390.01	+2.32	Possible small biais between the retrieved XCO ₂ using the two sounders	
201509	646	393.92	591	393.56	+0.36		

Summary (1/2)

- This exercise was done to compare the capabilities of retrievals of T_{surf} and CO_2 from IASI-A and IASI-B in one "surface window" i.e. 940-960 cm⁻¹ (~10.4 µm) for obtaining "climate quality records" at a regional scale in the summer months of the Arctic Ocean for a period of 6 years for IASI-A (2010 to 2015) and 3 years for IASI-B (2013 to 2015) with a global, a basin scale and 2° latitude band disaggregation in the latitude region [68N; 80N]
- The individual T_{surf} uncertainty of IASI is ~ 0.05 K 1σ for clear IFOVs, homogeneous, over sea and with a normal atmospheric lapse rate T(z) profile (from ECMWF)
- The individual XCO_2 uncertainty of IASI is ~ 10 ppmv 1 σ for clear IFOVs, homogeneous, over sea and with a normal lapse rate
- There is no *a priori* constrain on the XCO_2 value except a constant mixing ratio profile $x_{CO2}(z)$. The exact shape of the profile in the oceanic boundary layer is not very well constrained by the models due to the complicated sea-air exchanges
- The variation of T_{surf} with latitude and between July/Aug./Sept. is significant
- The interannual variability does not show a trend in T_{surf} at the regional scale
- The overall trend in the CO₂ column averaged VMR is well captured over the 6 years period for IASI-A and 3 years period for IASI-B

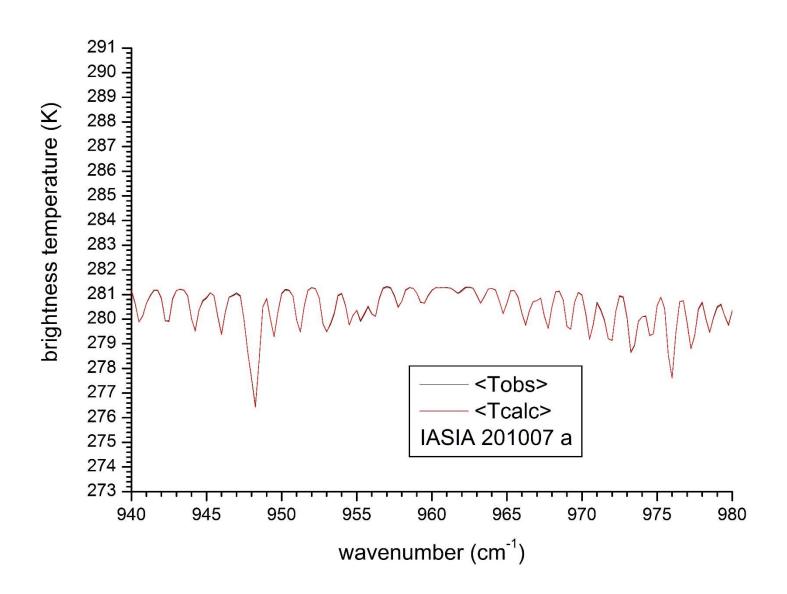
Summary (2/2)

- There is a significant interannual variability in XCO₂ over the ice free Arctic Ocean, to be correlated to large anomalies as the year 2012 when an absolute minimum in the ice pack area was observed (by other instruments)
- More work is needed to refine the analysis and get a better statistics on 2° regional zones of identified Artctic Oceans basins using more IFOVs (a "thinning" of IFOVs was performed in the present work)
- The zonal average of XCO₂ over ice free Arctic waters by latitude bands 2° wide between 68N and 80N for the 3 months of July, August and September and the 6 years between 2010 and 2015 show the expected overall geophysical behaviour, with significant zonal and interannual variations, however
- With these characteristics TIR measurements at high latitude can constrain CO₂ flux inversion models through the ocean-land contrast and latitudinal as well as monthly variations especially in summer
- A longer time frame analysis will consolidate these conclusions using IASI-A data before 2010, more data of IASI-A and IASI-B in 2016, 2017, 2018, and with the operational and backup IASI after the launch of IASI-C
- The IASI mission is indeed providing series of "climate quality variables" for T_{surf} and CO₂ in the not so well documented Arctic region
- Small remaining inter-instrument differences still need to be carefully examined

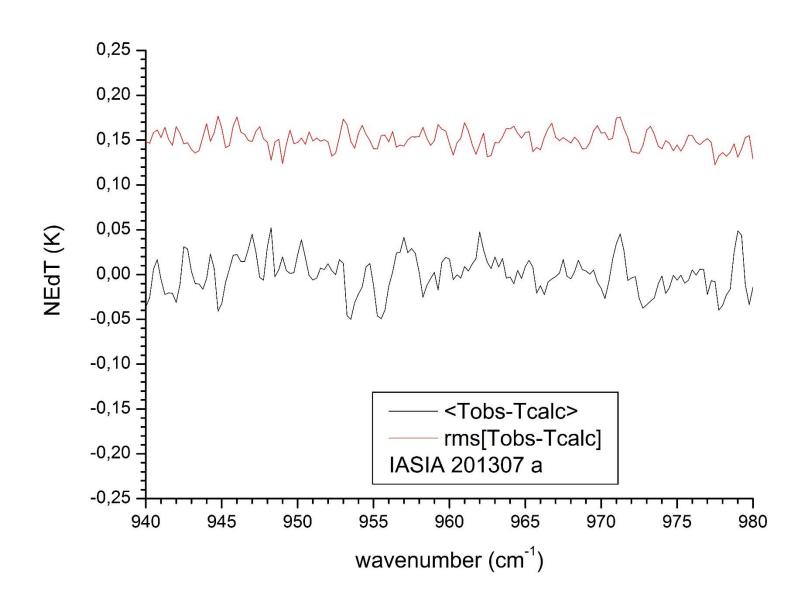
Acknowledgements

Access to IASI L1 and L2 products of

 Mesocentre IPSL and French atmospheric data base



Special thanks to D. Coppens and B. Théodore



Backup slides

Fitted spectra with T_{obs} and T_{calc}

Fitted spectra with <obs-calc> and <rms>

Forward model uncertainties in the RTM near 948 cm⁻¹

- SF₆ Q branch in the vicinity of one CO₂ line and one H₂O line → need better T/P dependence of the SF₆ cross-sections and better line parameters (temperature dependence for the foreign and self-broadening for this H₂O line)
- This leads to an additional spectral variability around 948 cm⁻¹
- Inflating the measurement error near 948 cm⁻¹ (2 spectral samples for IASI) is a proper way to handle this problem