

IASING science data processing overview

<u>E. Péquignot</u>¹, B. Tournier ², J. Donnadille ², C. Standfuss ², H. Makhmara¹, A. Deschamps¹, F. Bernard¹, E. Baldit¹, S. Guibert¹, S. Rousseau¹, F. Bermudo¹, P-L. Georgy³, J-F. Pasquier³, M. Schillinger³

¹Centre National d'Etudes Spatiales (Toulouse, France)

²Noveltis (Labège, France)

³Airbus Defense and Space (Toulouse, France)

Introduction

- IASI-NG instrument measures interferogram (not spectrum!)
- Interferogram = Fourier Transform (Spectrum)

Note: all these data are sampled data, not continuous!

- Users work with L1C spectrum
- (+ additional information like flags, cloud fraction,....)
- L1C spectrum ("user friendly approach")
 - fully calibrated (spectral and radiometry)
 - a unique ISRF for all channels of all spectra
 - → a sounding is a geo-localized point
 - performance requirement : Radiometry = IASI / 2, Spectral = IASI/2, geometry = IASI

On-board/ground sharing is driven by TM allocated (6 Mb/s in average, excluding a sub-set of full measured interferogram verification data.)

On-board processing objectives

As long as interferogram acquisition and sampling is done properly (Shannon criteria respected and anti-aliasing filter), all the meaningful information is contained in [0,v_s/2], where v_s is the wavenumber associated to the sampling frequency (v_s/2 ~ 7820 cm⁻¹ = 1.2788 μm)

- The logic of the design becomes then more obvious
 - ◆ Preserve the information content by keeping the Fourier transform reversible in the useful spectral band and with respect to instrument artifacts we correct on ground
 - Be compliant with computation time and telemetry data rate.
 - ◆ The data flow is compressed from 200 Mb/s to 6 Mb/s!

On-board processing of science data

16 (pixels) x 4 (bands) sampled interferograms

16 (pixels) x 4 (bands) compressed complex spectra (real + imaginary parts)

Preprocessing

(to avoid spectral aliasing introduced by discreet FT and loss of information)

1st level of compression

- 1) FFT of interferogram
- 2) Frequency truncation to useful band
- (+ interbands + ghost + spikes + monitoring frequencies)

Data rate / 20-25

2nd level of compression

"conventional compression" Quasi-loss less (quantization 0.5% noise increase)

Data rate / 2-3

Space segment output

Grey: Atmospheric input spectrum ($Opd_{Max} = 4.2 \text{ cm}$, SRF = Cardinal sine)

Blue: L0 spectrum space segment output (real part, $Opd_{Max} = 4.2$ cm, SRF = Nominal instrument, Background at 80 K)

Instrument chromatic spectral shift

- The field compensation within the interferometer is compulsory in order to achieve NedT and spectral resolution requirements
- This field compensation introduces a large chromatic effect (up to 21 cm⁻¹ @645cm⁻¹)
- This is a new feature with respect to IASI first generation
- It is corrected by the L1 processing

On-Ground Processing: objectives

Objectives

- Providing atmospheric spectra fully calibrated (spectral and radiometry) and geolocalized
- ◆ Performing ISRF removal (de-convolution). The variable ISRF with respect to channel, pixel and time is replaced by a single and standard spectral response function.
- → Providing additional geophysical characteristics of the scene (at pixel and subpixel scale) in order to help with the exploitation of IASI-NG spectra.
- → Making the processing in near real time (more than 1 million spectra per day !)

• The main design drivers are

- ISRF Estimation Model reliability and accuracy
- Radiometric, spectral and geo-location performances
- → Computing time

On-Ground Processing: pre-processing (overview)

Pre-processing is mainly done in the interferogram space

Operations: Spike Correction, Direct Fourier Transform, Interferogram Resampling

(centered on ZPD), Interferogram Apodisation and Inverse Fourier Transform

LO and Apodized Raw spectra: reduced to the useful spectral band and complex, intermediate interferograms: real

On-Ground Processing: pre-processing (apodisation)

- ♦ Numerical apodisation $I_{ap}(x) = I(x)A_p(x)$
- → Truncated Gaussian: FWHM 0.25 cm⁻¹ & sampling 0.125 cm⁻¹ (OPD_{max}=4 cm)

- → Fully reversible
- Can be changed easily (note that improving spectral resolution increases the noise)
- Making the apodisation before or after the ISRF removal has no impact on spectral performances as long as the apodisation function is symmetric
- Making apodisation and spectral calibration before the radiometric calibration is compulsory to achieve performance

On-ground processing: spectral and radiometric calibration

Main-processing is done in the spectrum space

Self Apodisation Functions: complex

Equalized Spectra: complex

Level 1C Spectra:

Real Part disseminated to the users

Imaginary Part delivered to the Technical Expertise Center (TBC)

ISRF removal

- Spectral calibration objectives
- Correcting from the ISRF centroid shift and shape for each wavenumber
- Spectral calibration principle
- → Monochromatic local deconvolution of the ISRF. As convolution (resp. deconvolution) is a product (resp. division) in the interferogram space, it makes mathematical operations easiest and reversible.
- ◆ "short FFT" of typically ±512 or 1024 samples save a huge amount of computing time

ISRF removal

ISRF-EM objectives

The quality of the ISRF removal relies on an accurate ISRF model + onground and in-flight characterisations of input parameters of this model

ISRF-EM Parameter Estimation (Metrology)

The interferometer baseline design includes 5 laser beams

- The on-axis beam z₀ provides the nominal OPD including µvibration effects
- The difference between z₂&z₄ provides the tilt around u
- The difference between z₁&z₃ provides the tilt around v
- The mean value of z_1 , z_2 , z_3 and z_4 compared to z_0 provides the air/glass ratio
- The difference between the mean value of z₂&z₄ and the mean value of z₁&z₃ provides the prism gap

ISRF-EM Parameter Estimation (Fabry Perot)

$$\operatorname{Tr}_{\mathrm{FPI}-0}(v) = \frac{1}{1 + F \cdot \sin^2(2\pi \cdot h \cdot \cos \theta \cdot v)}$$

$$F = \frac{4 \cdot R}{(1 - R)^2}$$

- The interferometer baseline design includes a FP device to monitor in-flight IASI-NG spectral calibration (mainly KBr refractive index in the whole spectral domain)
- Signal = reflection of the hot parts of the instrument (including field effect integration and SRF convolution)

FPI level 1c spectra in the spectral range 1980-2020 $\rm cm^{\text{-}1}$ for detectors 4, 7, 10, and 13

Main advantages

- → it creates a regular spectral pattern that is easiest to model than the atmosphere in the whole spectral range
- => Accurate monitoring of spectral calibration

ISRF-EM Parameter Estimation (Fabry-Perot)

 Absolute spectral shift is measured through the recognition and accurate location of well-defined patterns in the atmospheric spectrum. It has a strong heritage from IASI first generation.

Measured spectrum Simulated spectrum

Fabry-Perot direct model input parameters tuning using a set of anchor wavenumbers

 Algorithms are based on searching for the maximum of correlation between a measured and simulated spectrum (RTM)

ISRF-EM Parameter Estimation (Doppler shift)

Earth rotation and FOV spatial extension (max at the edge of the swath)

LOS stabilization during acquisition (max at nadir)

- Residual Doppler shift is not negligible with respect to IASI-NG spectral shift performance (whereas it was the case for IASI)
- Correction using a polynomial variation of SAF phase with respect to v (expected linear)

$$v_{Dop}(x) = V_{Dop}(@ZPD) + a_{Dop}(1) \cdot x + \sum_{k=2}^{N_D} a_{Dop}(k) \cdot x^k$$

Ground segment output

Black: Atmospheric input spectrum ($Opd_{Max} = 4.2 \text{ cm}$, SRF = Cardinal sine) Red: L1C spectrum L1 processing output (real part, $OPD_{Max} = 4 \text{ cm}$, SRF = L1C)

Space segment output

Grey: Atmospheric input spectrum ($Opd_{Max} = 4.2 \text{ cm}$, SRF = Cardinal sine)

Blue: L0 spectrum space segment output (real part, $Opd_{Max} = 4.2$ cm, SRF = Nominal instrument, Background at 80 K)

Conclusions

- Since the beginning IASI-NG has been thought as a system including an instrument (INS), on-board processing (OBP), on-ground processing (L1C POP), processing parameters initialisation/monitoring/update (IASTEC).
 - » L1C performances rely on the complementarity and mastering of these 4 components.
 One fails, all fail!
- OBP_Science (and auxiliary data processing): defined and prototyped
 - First validation done by ADS
- OGP_Science: defined and prototyped
 - » Scientific validation of algorithms has started (see Adrien's poster #139)
- OGP_Image: "IASI-like" version has been defined and prototyped
 - Some improvement with respect to IASI are on-going
 - Expected to be completed by the end of 2016
- OGP_ISRFEM: roughly defined and not prototyped yet
 - Preliminary expected by Q1 2017
- OGP_TEC: expected by Q2 2018

