IASI conference

Antibes, 11-15 April 2016

Improving the knowledge of the atmospheric state using the validation of the level1 radiances of IASI

Raymond Armante

N. Scott, V. Capelle, L. Crépeau, N. Meilhac, A. Chédin, N. Jacquinet, C. Crevoisier

L1 Validation chain at LMD

Validation chain

The Analysed RadioSounding Archive (ARSA)

- □ Radiosounding from ECMWF selected after severe quality controls (fully automated)
- □ Extrapolation of T and H₂O profiles when necessary (ERA Interim up to 0.1 hPa, then with, ACE-FTS L2)
- □Add missing parameters such as ozone profile and surface temperature
- \Rightarrow A 43-level description of the atmosphere between surface and 0.0026 hPa including P, T, H₂O, Ozone profiles, surface temperature, Geolocation + date/time

⇒See Poster Scott et al., S2-81

ARSA starts in January 1979 and is extended continuously

So far: A total of > 4.9 million profiles from a total of ~22 millions considered

ARSA available at http://ara.abct.lmd.polytechnique.fr/index.php?page=arsa.

Validation chain

Validation chain

See posters #S2.82, S5.105, S7.14, oral

Validation chain: L1

Validation chain: Radiative transfer

This talk: Validation chain for L2 products

Results: In the 2500-2760 cm⁻¹ spectral region

Bias between simulated and observed brightness temperatures may be as high as **1.5 K** especially in the 2720. – 2730 cm⁻¹ spectral region. Sign is negative, indicating too high an absorption in this region. From GEISA → Main absorber is *HDO*

Several works indicate a vertical variation of the δD value $\delta D=1000 \times ([HD^{(16)}O]/[H_2^{(16)}O] / SMOW -1)$, with Standard Mean Ocean Water SMOW = 3.1152×10^{-4}

Vertical variation of the δD value : Impact on Simulated vs Observed differences (mean H/D profile applied to each ARSA H₂O profiles)

• Evaluation of CO₂ retrieved at LMD from IASI/AMSU:

- •Mid-tropospheric column
- Clear-sky, land/sea, day/night
- •NLIS method with 84 channels
- Tropics only: 30S-30N

« Calc. – Obs. » 4A/OP, ARSA, Tropical, Sea, Day

Δc-o [372ppm] (K)

« Calc. – Obs. » 4A/OP, ARSA, Tropical, Sea, Day

- Taking L2 CO_2 yields radiative residuals Δc -o closer to of or channels mostly sensitive to CO_2 (wave numbers < Q-Branch at 720 cm-1).
 - → Good consistency between CO₂ retrieved from IASI and... IASI radiances.
- For $\omega > 720$ cm-1, seasonality and trend mostly removed but any spectroscopy issues could remained as well as high sensitivity to H_2O and O_3 has to be studied.

L2 Validation: GHG (CO at 4.6 μm)

ARSA (T, H2O, O3, Temp. Surface) + CO (LMD)

L2 validation: The surface properties (temperature and emissivity)

•<u>Method</u>: Physical inversion of the RTE using a fast RT model (Péquignot et al., 2006, Capelle et al., 2012)

•outputs:

- ✓ Sea: Surface Temperature
- ✓ Land: Surface temperature and emissivity continuous spectrum at 0.05 μm resolution between 3.7 and 14.0 μm for monthly grid (0.5 $^{\circ}$ X 0.5 $^{\circ}$)
- ✓ ST and aerosols AOD for each IASI spot

Surface temperature (K)

See poster #S8.91

L2 validation: Impact of two different SST on the L1 "calc-obs" (1/2)

•NB: an alternative/first method developed at LMD was a regression using channels around 2143 cm⁻¹

L2 validation: The SST

- >regression using the 2143.50 cm-1 IASI channel (blue)
- ➤ Physical method (red) (use of the emissivity of snyder)

2011 : 13000 atms

L2 validation: The SST

- >regression using the 2143.50 cm-1 IASI channel (blue)
- ➤ Physical method (red) → emissivity of snyder

L2 validation: The LST and emissivity

- ➤ regression using the 2143.50 cm-1 IASI channel (blue)
- ➤ Physical method (red) → temperature and emissivitiy

2011: 30000 atms

Saharan collocations (100 km)

L2 validation: The LST and emissivity

- >regression using the 2143.50 cm-1 IASI channel (blue), emiss.=0.98
- ➤ Physical method (red) → temperature and emissivity

2011 : 20000 atms

L2 validation: Conclusions and perspectives

Conclusions:

- ✓ Study of radiative biases give a way of evaluating the consistency of the retrievals
- ✓ Knowledge of channel characteristics vs. L2 is needed (e.g. tropo. vs strato, interferences between species, etc.) to refine the analysis
- ✓ good constitency of the time series for one parameter at a time (HDO, GHG, Surface properties)
- ✓ Goal: 0 K radiative bias... if spectroscopy, RT code (e.g. line-mixing), instrument, etc. all properly taken into account!

Perspectives:

- ✓ Over sea, estimate also the emissivity and test it in the validation chain
- ✓ Look at the residuals as a function of the viewing angle to detect possible angular effect in the inversion (AMSU asymmetry, ...)
- ✓ take into account various variables simultaneously.
- ✓ validation with the use in the chain of other datasets: ECMWF, Eumetsat L2, ...

L2 validation: Thank you!

