

EUMETSAT is an intergovernmental organisation with 30 Member States and 1 Cooperating State

EUMETSAT's Mission

- Primary objective: establish, maintain and exploit European systems of operational meteorological satellites, taking into account as far as possible the recommendations of WMO
- Further objective: contribute to the operational monitoring of the climate change

Need for two types of meteorological satellites

Geostationary orbit
Vital for forecasts up to

Vital for forecasts up to a few hours

Polar orbit: critical for forecasts up to 10 days

Deployment of current generation satellites

Delivering to users worldwide in real time

EUMETCast Users Worldwide as of 30 June 2015

EARS: regional real time data services for regional NW

- Direct broadcast data acquired/processed at stations
- Products collected from network, disseminated within 15 to 30 minutes from sensing

Meeting operational availability targets

Meteosat Second Generation: a two-satellite operational system

Meteosat Third Generation: MTG-I and MTG-S missions

- •MTG-I imagery mission implemented by a two-satellite system:
 - Advanced imager (FCI)
 - Full disk imagery every 10 minutes in 16 spectral bands
 - Fast imaging of European weather every 2.5 minutes
 - New Lightning Imager (LI)

- •MTG-S sounding mission:
 - Hyperspectral infrared (IRS):
 - 3D mapping of water vapour, temperature, O3 every 30 minutes over Europe
 - Will carry the Copernicus Sentinel-4 Ultraviolet sounder
 - Air quality monitoring, in synergy with IRS instrument

EPS/Metop is part of the Initial Joint Polar System (IJPS)

- Exchange of instruments (ATOVS from NOAA, MHS from EUMETSAT)
- Coordinated operations, data and services
- Extended agreement in 2003 to include Metop-C

Sun-synchronous
Orbit of 102 minutes
14.1 orbits per day

The Metop Satellite (Metop-B 2012)

EPS Ground System

Atmospheric Profiling with IASI: Acquisition characteristics

Credit: Th. August, 2014

EPS-SG in the Joint Polar System shared with the US

EPS-SG in the Joint Polar System shared with the US

EPS Second Generation (EPS-SG)

- Primary mission: further improve observational inputs to Numerical Weather Prediction models
- Significant contributions to other real time applications
 - Nowcasting at high latitudes
 - Marine meteorology and operational oceanography
 - Operational hydrology
 - Air quality monitoring

 Climate monitoring: expand by 20+ years the climate data records initiated in 2006 with EPS

EPS Second Generation

- Continuation and enhancement of service from mid morning polar orbit in 2021 – 2040
- Twin satellite in-orbit configuration:
 - Metop-SG A: optical imagery and sounding mission
 - Flies the Copernicus Sentinel-5 instrument
 - Metop-SG B: microwave imaging mission
- Two series of 3 successive satellites for 21 years of operations
- European contribution to the Joint Polar System (JPS) shared with the US/NOAA

Next Generation EPS/Metop-SG

- Launch mass = 3.79 tons
- Mean power consumption = 2.7 kW
- Data rate = day / night / peak 14 / 14 / 17 Mbps

- Launch mass = 4,08 tons
- Mean power consumption = 3.4 kW
- Data rate = day / night / peak
 60 / 22 / 77 Mbps

- Launcher: Soyuz in Kourou / Falcon 9 / Ariane 5
- Orbit: MetOp Sun Synchronous Orbit 817 km, 9h30 Local Time at Descending Node
- Controlled re-entry into the South Pacific Ocean Uninhabited Area

Metop-SG-A embarks | ASI-NG

EPS-SG mission capabilities

- Major improvements to all EPS observation missions
 - Infrared and microwave sounding
 - Optical imagery (METImage)
 - Scatterometer
 - Radio-occultation
- New imagery missions
 - 3MI: first operational imaging polarimeter
 - Microwave imager (MWI): imagery of precipitation
 - Ice Cloud Imager (ICI): ice clouds

IASI-NG, MWS & Sentinel-5/Metop-SG A: the sounding mission

IASI-NG Objectives

- Temperature and Humidity Profiles
- Trace gases (O₃, CO, CH₄, CO₂.)
- Aerosols, volcanic ash
- Reference IR instrument for climate monitoring

MWS Objectives

- T and HU profiles (all weather)
- Cloud liquid water total column

Sentinel 5 Objectives

- O3 profiles
- CO₂,SO₂, NO₂, H₂O, CO, CH₄, BrO, HCHO, OCHCHO

IASI-NG in the heritage of IASI

- As for IASI EUMETSAT co-operation agreement with CNES
- Proto flight model developed/co-funded by CNES/EUMETSAT
- Following two flight models procured by CNES, fully funded by EUMETSAT
- Level 1 operational processor developed by CNES
- Technical Expertise Centre operated by CNES
- **•EPS-SG System operated by EUMETSAT**

Data service to Users of EPS-SG, hence for IASI-NG

Regional data delivery service

- Area of Interest (AOI)
- timeliness of 30 minutes versus 70 min (global data).
- network of direct broadcast ground stations
- AOI currently covers the North Atlantic and European regions between 30° to 80° North and 65° West to 50° East,
- Re-use selected existing EPS EARS stations sites

Global data delivery

- Svalbard and Mc Murdo stations
- •Instrument data provided to users in near real-time,
- The time between observation and delivery to users, via EUMETCast, is nominally be 70 minutes or better.
- Processed data to users via EUMETCast
- Meteorological data and products also be sent and relayed via WMO GTS and RMDCN) to National Meteorological Services and ECMWF.

•

Major impact of Metop-A on Day 1 forecast

Impact of Satellite Observations by "FSO"

Outlook and conclusions

- -> IASI is one of the most important mission for NWP
- Thanks to the scientific community, more and more information extracted from IASI data on trace gases and greenhouse gases, and some products have now reached operational maturity
- IASI is also a very stable infrared reference instrument used worldwide to cross-calibrate other infrared measurements, in particular infrared imagery of all GEO satellites around the "ring" through the GSICS cooperative project.
- -> IASI is thus a very important instrument for climate change monitoring (CCCD off to improve quality of IASI measurements for climate monitoring)
- We are now preparing Metop-C (October 2018)
- Beyond, continuity is assured with IASI-NG on EPS-SG/Metop-SG-A form 2022 onwards into the 2040s
- Partnership, cinternational cooperation and industrial competence is key!

IASI is 10 years in orbit!

And EUMETSAT is 30 years old!